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Introduction

“Small” is a simple, typeless, 32-bit extension language with a C-like syntax.
Execution speed, stability, simplicity and a small footprint were essential design
criterions for both the language and the interpreter/abstract machine that a Small
program runs on.

An application or tool cannot do or be everything for all users. This not only
justifies the diversity of editors, compilers, operating systems and many other
software systems, it also explains the presence of extensive configuration options
and macro or scripting languages in applications. My own applications have
contained a variety of little languages; most were very simple, some were extensive.
And most needs could have been solved by a general purpose language with a
special purpose library.

The Small language was designed as a flexible language for manipulating objects
in a host application. The tool set (compiler, abstract machine) were written so
that they were easily extensible and would run on different software/hardware
architectures.

q

Many years ago, I retyped the “Small C” compiler from Dr. Dobb’s Journal, by
Ron Cain and James Hendrix. Having just grasped the basics of the C language,
working on the Small C compiler was a learning experience of its own. The com-
piler, as published, generated code for a 8080 assembler. The first modification
I needed to make was to adapt it to the 8086 processor. Through the years that
I used it (to write low level system software) I expanded the compiler with new
features and fixed many details. Eventually, as I was moving towards bigger ap-
plications in more conventional environments, the Small C compiler was replaced
by main-stream development environments.

In early 1998, I was looking for a scripting language for an animation toolkit.
Among the languages that I evaluated were Lua, bob, Scheme, rexx, Java,
ScriptEase and Forth. None of these languages covered my requirements com-
pletely. I have always felt that the C language is a flexible and convenient lan-
guage whose basics can be mastered in a week. While experimenting with Quincy
(from Al Stevens), I decided that a simplified C would probably be a good fit. I
dusted off Small C.

Small is a descendent of the original Small C, which at its turn was a subset
of C. Some of the modifications that I did to Small C, e.g. the removal of the
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type system and the substitution of pointers by references, were so fundamental
that I could hardly call my language a “subset of C” or a “C dialect” anymore.
Therefore, I stripped off the “C” from the title and kept the name “Small”.

I am indebted to Ron Cain and James Hendrix (and more recently, Andy Yuen),
and to Dr. Dobb’s Journal to get this ball rolling. Although I must have touched
nearly every line of the original code multiple times, the Small C origins are still
clearly visible.

q

A detailed treatise of the design goals and compromises is in appendix A; here I
would like to summarize a few key points. As written in the previous paragraphs,
Small is for customizing applications, not for writing applications. Small is weak
on data structuring because Small programs are intended to manipulate objects
(text, sprites, streams, queries, . . . ) in the host application, but the Small program
is, by intent, denied direct access to any data outside its abstract machine. The
only means that a Small program has to manipulate objects in the host application
is by calling subroutines —so called “native functions”— that the host application
provides.

Small is flexible in that key area: calling functions. Small supports default values
for any of the arguments of a function (not just the last), call-by-reference as
well as call-by-value, and “named” as well as “positional” function arguments.
Small does not have a “type checking” mechanism, by virtue of being a typeless
language, but it does offer in replacement a “classification checking” mechanism,
called “tags”. The tag system is especially convenient for function arguments
because each argument may specify multiple acceptable tags.

For any language, the power (or weakness) lies not in the individual features, but
in their combination. For Small, I feel that the combination of default values for
function arguments in combination with named arguments blend together to a
very convenient way to call functions —and indirectly, to manipulate objects in
the host application.

q

This booklet tries to unite two books:
� a manual for the Small compiler and the abstract machine that I wrote;
� a definition of the Small language, independent of the current implementation.

These goals reflect the two main parts of the booklet entitled: “Small: the lan-
guage” and “Small: the compiler”. The third part of the booklet, “Appendices”,
provides relevant supplementary information and a rationale for the design.
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In the language specification, the term “parser”refers to any implementation that
reads and operates on conforming Small programs. A parser refers to both inter-
preters or compilers.
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Small: the language

Small is a simple programming language with a syntax reminiscent to the “C”
programming language. A Small program consists of a set of functions and a set
of variables. The variables are data objects and the functions contain instructions
(called “statements”) that operate on the data objects or that perform tasks.

The first program in almost any computer language is one that prints a simple
For compiling
instructions, see
page 69

string; printing “Hello world” is a classic example. In Small, the program would
look like:

#include <console>

main()

printf("Hello world^n")

Small separates the language from the function library. Since Small is designed to
be an extension language for applications, the function set that a Small program
has at its disposal depends on the implementation. As a result, the Small language
has no intrinsic knowledge of any function; a program must declare every function
that it uses. In this first example, the printf function must be declared, either
by writing the definition (the function’s prototype) somewhere near the top of the
source file, or by including a text file that contains the required definition —along,
perhaps, with definitions of constants and of other functions. The “Hello world”
example uses the latter approach, as its first line exhibits.

A stand-alone Small program starts execution with function main. Here, the
function main contains only a single instruction, which is printed at the line
below the function head itself. Line breaks and indenting are insignificant; the
invocation of the function printf could equally well be on the same line as the
head of function main.

The arguments of a function are always enclosed in parentheses. If a function does
not have any arguments, like function main, the opening and closing parentheses
are still present. The single argument of the printf function is a string, which

String literals: 41 must be enclosed in double quotes.

The characters ^n near the end of the string form a control character , in this case
Control charac-
ters: 41 they indicate a “newline” symbol. When printf encounters the newline control

character, it advances the cursor to the first column of the next line. One has to
use the ^n control character to insert a “newline” into the string, because a string
may not wrap over multiple lines.
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Small is a “case sensitive” language: upper and lower case letters are considered
to be different letters. It would be an error to spell the function printf in the
above example as “PrintF”.

This first example also reveals a few differences between Small and the C language:
� semicolons are optional, except when writing multiple statements on one line;
� when the body of a function is a single instruction, the braces (for a compound

instruction) are optional;
� “escape characters” are called “control characters” in Small, and they start

with a caret (“^”) rather than a backslash (“\”), but see also page 56 or page
69 to change this special character.

q

Fundamental elements of most programs are calculations, decisions (conditional
execution), iterations (loops) and variables to store input data, output data and
intermediate results. The next program example illustrates many of these con-
cepts. The program calculates the greatest common divisor of two values using
an algorithm invented by Euclides.

/* the greatest common divisor of two values, using Euclides’ algorithm */

#include <console>

main()

{

print("Input two values^n")

new a = getvalue()

new b = getvalue()

while (a != b)

if (a > b)

a = a - b

else

b = b - a

printf("The greatest common divisor is %d^n", a)

}

When the body of a function contains more than one statement, these statements
must be embodied in braces —the “{” and “}” characters. This groups the in-

Compound state-
ment: 52structions to a single compound statement . The notion of grouping statements in

a compound statement applies as well to the bodies of if–else and loop instruc-
tions.

The new keyword creates a variable. The name of the variable follows new. It Data declara-
tions are covered
in detail starting
at page 18

is common, but not imperative, to assign a value to the variable already at the
moment of its creation. Variables must be declared before they are used in an
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expression. The getvalue function (also part of the “console” function set) reads
in a value from the keyboard and returns the result. Note that Small is a typeless
language, all variables are numeric cells that can hold a signed integral value.

Loop instructions, like while, repeat a single instruction as long as the loop
“while” loop: 55
“if–else”: 54 condition, the expression between parentheses, is “true”. To execute multiple

instructions in a loop, again, requires one to group these in a compound statement.
The if–else instruction has one instruction for the “true” clause and one for the
“false”.

The loop condition for the while loop is “(a != b)”; the symbol != is the “not
Relational opera-
tors: 48 equal to” operator. That is, the if–else instruction is repeated until a equals b.

It is good practice to indent the instructions that run under control of another
statement, as is done in the preceding example.

The call to printf, near the bottom of the example, differs from how it was used
in the first example (page 4). Here it prints literal text and the value of a variable
(in a user-specified format) at the same time. The %d symbol in the string is a
token that indicates the position and the format that the subsequent argument
to function printf should be printed. At run time, the token %d is replaced by
the value of variable a (the second argument of printf).

q

Next to simple variables with a size of a single cell, Small supports arrays and
symbolic constants, as exemplified in the program below. It displays a series of
prime numbers using the well known “sieve of Eratosthenes”.

/* Print all primes below 100, using the "Sieve of Eratosthenes" algorithm */

#include <console>

main()

{

const max_primes = 100

new series[max_primes] = { true, ... }

for (new i = 2; i < max_primes; ++i)

if (series[i])

{

printf("%d ", i)

/* filter all multiples of this "prime" from the list */

for (new j = 2 * i; j < max_primes; j += i)

series[j] = false

}

}
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When a program or sub-program has some fixed limit built-in, it is good prac-
Constant decla-
ration: 42tice create a symbolic constant for it. In the preceding example, the symbol

max_primes is a constant with the value 100. The program uses the symbol
max_primes three times after its definition: in the declaration of the variable se-
ries and in both for loops. If we were to adapt the program to print all primes
below 500, there is now only one line to change.

Like simple variables, arrays may be initialized upon creation. Small offers a con-
Progressive ini-
tiallers: 20venient shorthand to initialize all elements to a fixed value: all hundred elements

of the “series” array are set to true —without requiring that the programmer
types in the word “true” a hundred times. The symbols true and false are
predefined constants.

When a simple variable, like the variables i and j in the primes sieve example, is
declared in the first expression of a for loop, the variable is valid only inside the
loop. Variable declaration has its own rules; it is not a statement —although it
looks like one. One of those rules is that the first expression of a for loop may

“for” loop: 53contain a variable declaration.

Both for loops also introduce new operators in their third expression. The ++
An overview of
all operators: 45operator increments its operand by one; that is, ++i is equal to i = i + 1. The

+= operator adds the expression on its right to the variable on its left; that is,
j += i is equal to j = j + i.

The first element in the series array is series[0], if the array holds max_primes
elements, the last element in the array is series[max_primes-1]. If max_primes
is 100, the last element, then, is series[99]. Accessing series[100] is invalid.

q

Larger programs separate tasks and operations into functions. Using functions in-
creases the modularity of programs and functions, when well written, are portable
to other programs. The following example implements a function to calculate
numbers from the Fibonacci series.

The Fibonacci sequence was discovered by Leonardo “Fibonacci” of Pisa, an Ital-
ian mathematician of the 13th century—whose greatest achievement was popular-
izing for the Western world the Hindu-Arabic numerals. The Fibonacci numbers
describe a surprising variety of natural phenomena. For example, the two or three
sets of spirals in pineapples, pine cones and sunflowers usually have consecutive
Fibonacci numbers between 5 and 89 as their number of spirals. The numbers that
occur naturally in branching patterns (e.g. that of plants) are indeed Fibonacci
numbers. Finally, although the Fibonacci sequence is not a geometric sequence,
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the further the sequence is extended, the more closely the ratio between successive
terms approaches the golden ratio, of 1.6188. . .that appears so often in art and
architecture.

The assert instruction at the top of the fibonacci function deserves explicit
“assert” state-
ment: 52 mention; it guards against “impossible” or invalid conditions.

/* Calculation of Fibonacci numbers by iteration */

#include <console>

main()

{

print("Enter a value: ")

new v = getvalue()

printf("The value of Fibonacci number %d is %d^n",

v, fibonacci(v) )

}

fibonacci(n)

{

assert n > 0

new a = 0, b = 1

for (new i = 2; i < n; i++)

{

new c = a + b

a = b

b = c

}

return a + b

}

The implementation of a user-defined function is not much different than that of
Functions: prop-
erties & features:
24

function main. Function fibonacci shows two new concepts, though: it receives
an input value through a parameter and it returns a value (it has a “result”).

Function parameters are declared in the function header; the single parameter in
this example is n. Inside the function, a parameter behaves as a local variable,
but one whose value is passed from the outside at the call to the function.

The return statement ends a function and sets the result of the function. It need
not appear at the very end of the function; early exits are permitted.

q

Dates are a particularly rich source of algorithms and conversion routines, because
the calenders that a date refers to have known such a diversity, through time and
around the world.
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The “Julian Day Number” is attributed to Josephus Scaliger1 and it counts the
number of days since November 24, 4714 BC (proleptic Gregorian calendar).
Scaliger chose that date because it marked the coincidence of three well-established
cycles: the 28-year Solar Cycle (of the old Julian calendar), the 19-year Metonic
Cycle and the 15-year Indiction Cycle (periodic taxes or governemental requisi-
tions in ancient Rome), and because no literature or recorded history was known
to predate that particular date in the remote past. Scaliger used this concept to
reconcile dates in historic documents, later astronomers embraced it to calculate
intervals between two events more easily.

Julian Day numbers (sometimes denoted with unit “JD”) should not be confused
with Julian Dates (the number of days since the start of the same year), or with
the Julian calendar that was introduced by Julius Caesar.

Below is a program that calculates the Julian Day number from a date in the
(proleptic) Gregorian calendar, and vice versa. Note that in the proleptic Grego-
rian calendar, the first year is 1 AD (Anno Domini) and the year before that is
1 BC (Before Christ): year zero does not exits! The program uses negative year
values for BC years and positive (non-zero) values for AD years. The Gregorian
calendar was decreed to start on 15 October 1582 by pope Gregory XIII, which
means that earlier dates do not really exist in the Gregorian calendar. When
extending the Gregorian calendar to days before 15 October 1582, we refer to the
proleptic Gregorian calendar.

/* calculate Julian Day number from a date, and vice versa */

#include <console>

main()

{

new d, m, y, jdn

print("Give a date (dd-mm-yyyy): ")

d = getvalue(_, ’-’, ’/’)

m = getvalue(_, ’-’, ’/’)

y = getvalue()

jdn = DateToJulian(d, m, y)

printf("Date %d/%d/%d = %d JD^n", d, m, y, jdn)

print("Give a Julian Day Number: ")

jdn = getvalue()

JulianToDate(jdn, d, m, y)

1
There is some debate on exactly what Josephus Scaliger invented and who or what he called it

after.
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printf("%d JD = %d/%d/%d^n", jdn, d, m, y)

}

DateToJulian(day, month, year)

{

/* The first year is 1. Year 0 does not exist: it is 1 BC (or -1) */

assert year != 0

if (year < 0)

year++

/* move January and February to the end of the previous year */

if (month < 2)

year--, month += 12

new jdn = 365*year + year/4 - year/100 + year/400

+ (153*month - 457) / 5

+ day + 1721119

return jdn

}

JulianToDate(jdn, &day, &month, &year)

{

jdn -= 1721119

/* approximate year, then adjust in a loop */

year = (400 * jdn) / 146097

while (365*year + year/4 - year/100 + year/400 < jdn)

year++

year--

/* determine month */

jdn -= 365*year + year/4 - year/100 + year/400

month = (5*jdn + 457) / 153

/* determine day */

day = jdn - (153*month - 457) / 5

/* move January and February to start of the year */

if (month > 12)

month -= 12, year++

/* adjust negative years (year 0 must become 1 BC, or -1) */

if (year <= 0)

year--

}

Function main starts with creating variables to hold the day, month and year,
and the calculated Julian Day number. Then it reads in a date —three calls to
getvalue— and calls function DateToJulian to calculate the day number. After
calculating the result, main prints the date that you entered and the Julian Day
number for that date. Now, let us focus on function DateToJulian. . .

Near the top of function DateToJulian, it increments the year value if it is
negative; it does this to cope with the absence of a “zero” year in the proleptic
Gregorian calendar. In other words, function DateToJulian modifies its function
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arguments (later, it also modifies month). Inside a function, an argument behaves
like a local variable: you may modify it. These modifications remain local to the
function DateToJulian, however. Function main passes the values of d, m and y
into DateToJulian, who maps them to its function arguments day, month and
year respectively. Although DateToJulian modifies year and month, it does not

“Call by value”
versus “call by
reference”: 25

change y and m in function main; it only changes local copies of y and m. This
concept is called “call by value”.

The example intentionally uses different names for the local variables in the func-
tions main and DateToJulian, for the purpose of making the above explanation
easier. Renaming main’s variables d, m and y to day, month and year respec-
tively, does not change the matter: then you just happen to have two local vari-
ables called day, two called month and two called year, which is perfectly valid
in Small.

The remainder of function DateToJulian is uninteresting arithmetic.

Returning to the second part of the function main we see that it now asks for a day
number and calls another function, JulianToDate, to find the date that matches
the day number. Function JulianToDate is interesting because it takes one input
argument (the Julian Day number) and needs to calculate three output values,
the day, month and year. Alas, a function can only have a single return value
—that is, a return statement in a function may only containe one expression.
To solve this, JulianToDate specifically requests that changes that it makes to
some of its function arguments are copied back to the variables of the caller of the
function. Then, in main, the variables that must hold the result of JulianToDate
are passed as arguments to JulianToDate.

Function JulianToDatemarks arguments individually for the purpose of “copying
back to caller” by prefixing the arguments with an & symbol. Arguments with
an & are copied back, arguments without is are not. “Copying back” is actually
not the correct term. An argument tagged with an & is passed to the function
in a special way that allows the function to directly modify the original variable.
This is called “call by reference” and an argument that uses it is a “reference
argument”.

In other words, if main passes y to JulianToDate —who maps it to its function
argument year— and JulianToDate changes year, then JulianToDate really
changes y. Only through reference arguments can a function directly modify a
variable that is declared in a different function.

To summarize the use of call-by-value versus call-by-reference: if a function has
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one output value, you typically use a return statement; if a function has more
output values, you use reference arguments. You may combine the two inside a
single function, for example in a function that returns its “normal” output via a
reference argument and an error code in its return value.

As an aside, many desktop application use conversions to and from Julian Day
numbers (or varieties of it) to conveniently calculate the number of days between
to dates or to calculate the date that is 90 days from now —for example.

q

Small has no intrinsic “string” type; character strings are stored in arrays, with
the convention that the array element behind the last valid character is zero.
Working with strings is therefore equivalent with working with arrays.

Among the simplest of encryption schemes is the one called “ROT13” —actually
the algorithm is quite “weak” from a cryptological point of view. It is most widely
used in public electronic forums (BBSes, Usenet) to hide texts from casual reading,
such as the solution to puzzles or riddles. ROT13 simply “rotates” the alphabet
by half its length, i.e. 13 characters. It is a symmetric operation: applying it
twice on the same text reveals the original.

/* Simple encryption, using ROT13 */

#include <console>

main()

{

printf("Please type the string to mangle: ")

new str[100]

getstring(str, sizeof str)

rot13(str)

printf("After mangling, the string is: ^"%s^"^n", str)

}

rot13(string[])

{

for (new index = 0; string[index]; index++)

if (’a’ <= string[index] <= ’z’)

string[index] = (string[index] - ’a’ + 13) % 26 + ’a’

else if (’A’ <= string[index] <= ’Z’)

string[index] = (string[index] - ’A’ + 13) % 26 + ’A’

}



Small: the language • 13

In the function header of rot13, the parameter “string” is declared as an array,
but without specifying the size of the array —there is no value between the square
brackets. When you specify a size for an array in a function header, it must
match the size of the actual parameter in the function call.Omitting the array
size specification in the function header removes this restriction and allows the
function to be called with arrays of any size. You must then have some other
means of determining the (maximum) size of the array. In the case of a string
parameter, one can simply search for the zero terminator.

The for loop that walks over the string is typical for string processing functions.
Note that the loop condition is “string[index]”. The rule for true/false condi-
tions in Small is that any value is “true”, except zero. That is, when the array
cell at string[index] is zero, it is “false” and the loop aborts.

The ROT13 algorithm rotates only letters; digits, punctuation and special charac-
ters are left unaltered. Additionally, upper and lower case letters must be handled
separately. Inside the for loop, two if statements filter out the characters of in-
terest. The way that the second if is chained to the “else” clause of the first if
is noteworthy, as it is a typical method of testing for multiple non-overlapping
conditions.

Another point of interest are the conditions in the two if statements. The first
Relational opera-
tors: 48if, for example, holds the condition “’a’ <= string[index] <= ’z’”, which

means that the expression is true if (and only if) both ’a’ <= string[index]
and string[index] <= ’z’ are true. In the combined expression, the relational
operators are said to be “chained”, as they chain multiple comparisons in one
condition.

Finally, note how the last printf in function main uses the control character ^" to
Control charac-
ters: 41

print a double quote. Normally a double quote ends the literal string; the control
character inserts a double quote into the string.

q

In a typeless language, we might assign a different purpose to some array elements
than to other elements in the same array. Small supports enumerated constants
with an extension that allows it to mimic some functionality that other languages
implement with “structures” or “records”.

The example to illustrate enumerations and arrays is longer than previous Small
programs, and it also displays a few other features, such as global variables and
named parameters.
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/* Priority queue (for simple text strings) */

#include <core>

#include <console>

enum message

{

text : 40 char,

priority

}

main()

{

new msg[message]

/* insert a few items (read from console input) */

printf("Please insert a few messages and their priorities; \

end with an empty string^n")

for ( ;; )

{

printf("Message: ")

getstring(.string = msg[text], .maxlength = 40, .pack = true)

if (strlen(msg[text]) == 0)

break

printf("Priority: ")

msg[priority] = getvalue()

if (!insert(msg))

{

printf("Queue is full, cannot insert more items^n")

break

}

}

/* now print the messages extracted from the queue */

printf("^nContents of the queue:^n")

while (extract(msg))

printf("[%d] %s^n", msg[priority], msg[text])

}

const queuesize = 10

new queue[queuesize][message]

new queueitems = 0

insert(const item[message])

{

/* check if the queue can hold one more message */

if (queueitems == queuesize)

return false /* queue is full */

/* find the position to insert it to */

new pos = queueitems /* start at the bottom */

while (pos > 0 && item[priority] > queue[pos-1][priority])

--pos /* higher priority: move one position up */

/* make place for the item at the insertion spot */

for (new i = queueitems; i > pos; --i)
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queue[i] = queue[i-1]

/* add the message to the correct slot */

queue[pos] = item

queueitems++

return true

}

extract(item[message])

{

/* check whether the queue has one more message */

if (queueitems == 0)

return false /* queue is empty */

/* copy the topmost item */

item = queue[0]

--queueitems

/* move the queue one position up */

for (new i = 0; i < queueitems; ++i)

queue[i] = queue[i+1]

return true

}

Near the top of the program listing is the declaration of the enumeration message.
“enum” state-
ment: 42

This enumeration defines two constants: text, which is zero, and priority, which
is 11 (assuming a 32-bit cell). The idea behind an enumeration is to quickly define
a list of symbolic constants without duplicates. By default, every constant in the
list is 1 higher than its predecessor and the very first constant in the list is zero.
However, you may give an extra increment for a constant so that the successor
has a value of 1 plus that extra increment. The text constant specifies an extra
increment of 40 char. In Small, char is an operator, it returns the number of cells

“char” operator:
50needed to hold a packed string of the specified number of characters. Assuming

a 32-bit cell and a 8-bit character, 10 cells can hold 40 packed characters.

Immediately at the top of function main, a new array variable is declared with
the size of message. The symbol message is the name of the enumeration. It is
also a constant with the value of the last constant in the enumeration list plus
the optional extra increment for that last element. So in this example, message
is 11. That is to say, array msg is declared to hold 11 cells.

Further in main are two loops. The for loop reads strings and priority values
from the console and inserts them in a queue. The while loop below that extracts
element by element from the queue and prints the information on the screen. The
point to note, is that the for loop stores both the string and the priority number
(an integer) in the same variable msg; indeed, function main declares only a single
variable. Function getstring stores the message text that you type starting at
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array msg[text] while the priority value is stored (by an assignment a few lines
lower) in msg[priority]. The printf function in the while loop reads the string
and the value from those positions as well.

At the same time, the msg array is an entity on itself: it is passed in its entirity
to function insert. That function, near the end, says “queue[queueitems] =
item”, where item is an array with size message and queue is a two-dimensional
array that holds queuesize elements of size message. The declaration of queue
and queuesize are just above function insert.

The example implements a “priority queue”. You can insert a number of mes-
sages into the queue and when these messages all have the same priority, they are
extracted from the queue in the same order. However, when the messages have
different priorities, the one with the highest priority comes out first. The “intelli-
gence” for this operation is inside function insert: it first determines the position
of the new message to add, then moves a few messages one position upward to
make space for the new message. Function extract simply always retrieves the
first element of the queue and shifts all remaining elements down by one position.

Note that both functions insert and extract work on two shared variables,
queue and queueitems. A variable that is declared inside a function, like variable
msg in function main can only be accessed from within that function. A “global
variable” is accessible by all functions, and that variable is declared outside the
scope of any function. Variables must still be declared before they are used,
so main cannot access variables queue and queueitems, but both insert and
extract can.

Function extract returns the messages with the highest priority via its function
argument item. That is, it changes its function argument by copying the first ele-
ment of the queue array into item. Function insert copies in the other direction
and it does not change its function argument item. In such a case, it is advised
to mark the function argument as “const”. This helps the Small parser to both
check for errors and to generate better (more compact, quicker) code.

A final remark on this latest sample is the call to getstring in function main:
Named parame-
ters: 26

note how the parameters are attributed with a decsription. The first parameter
is labeled “.string”, the second “.maxlength” and the third “.pack”. Function
getstring receives “named parameters” rather than positional parameters. The
order in which named parameters are listed is not important. Named parameters
are convenient in specifying —and deciphering— long parameter lists.

q
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If you know the C programming language, you will have seen many concepts that
you are familiar with, and a few new ones. If you don’t know C, the pace of this
introduction has probably been quite high. Whether you are new to C or expe-
rienced in C, I encourage you to read the following pages carefully. This booklet
attempts to be both an informal introduction and a (more formal) language spec-
ification at the same time, perhaps succeeding at neither. Since it is also the only
book on Small, the focus of this booklet is on being accurate and complete, rather
than being easy to grasp.

The double nature of this section of the booklet shows in the order at which it
presents the subjects. The larger conceptual parts of the language, variables and
functions, are covered first. The operators, the statements and general syntax
rules follow later; not that they are less important, but they are easier to learn,
to look up, or to take for granted.
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Data and declarations
Small is a typeless language. All data elements are of type “cell”, and a cell
can hold an integral number. The size of a cell (in bytes) is system dependent
—usually, a cell is 32-bits.

A new variable is declared with the keywords new, static or public. A simple
variable declaration creates a variable that occupies one “cell” of data memory.
Unless it is explicitly initialized, the value of the new variable is zero.

A variable declaration may occur:
� at any position where a statement would be valid —local variables;
� at any position where a function declaration (native function declarations) or

a function implementation would be valid —global variables;
� in the first expression of a for loop instruction —also local variables.

Local declarations
A local declaration appears inside a compound statement. A local variable
can only be accessed from within the compound statement, and from
nested compound statements. A declaration in the first expression of a
for loop instruction is also a local declaration.

Global declarations
A global declaration appears outside a function and a global variable is
accessible to any function. Global data objects can only be initialized
with constant expressions.

• Static local declarations

A local variable is destroyed when the execution leaves the compound block in
which the variable was created. Local variables in a function only exist during
the run time of that function. Each new run of the function creates and initializes
new local variables. When a local variable is declared with the keyword static
rather than new, the variable remains in existence after the end of a function.
This means that static local variables provide private, permanent storage that is
accessible only from a single function (or compound block). Like global variables,
static local variables can only be initialized with constant expressions.

• Public declarations

Global “simple” variables (no arrays) may be declared “public” in two ways:
� declare the variable using the keyword public instead of new;
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� start the variable name with the “@” symbol.

Public variables behave like global variables. The abstract machine, however, has
The Abstract
Machine inter-
face: 83

a special interface to access public variables (read and write). As such, a host
program (which includes the abstract machine) may require that you declare a
variable with a specific name as “public” for special purposes —such as the most
recent error number, or the general program state.

• Constant variables

It is sometimes convenient to be able to create a variable that is initialized once
Symbolic con-
stants: 42and that may not be modified. Such a variable behaves much like a symbolic

constant, but it still is a variable.

To declare a constant variable, insert the keyword const between the keyword
that starts the variable declaration —new, static or public— and the variable
name.

Examples:
new const address[4] = { 192, 0, 168, 66 }

public const status /* initialized to zero */

Three typical situations where one may use a constant variable are:
� To create an “array” constant; symbolic constants cannot be indexed.
� For a public variable that should be set by the host application, and only by

the host application. See the preceding section for public variables.
� A special case is to mark array arguments to functions as const. Array argu-

ments are always passed by reference, declaring them as const guards against
unintentional modification. Refer to page 26 for an example of const function
arguments.

• Arrays (single dimension)

The syntax name[constant] declares name to be an array of “constant” elements,
See also “multi-
dimensional ar-
rays”, page 20

where each element is a single cell. The name is a placeholder of an identifier
name of your choosing and constant is a positive non-zero value; constant may
be absent. If there is no value between the brackets, the number of elements is
set equal to the number of initiallers —see the example below.

The array index range is “zero based” which means that the first element is at
name[0] and the last element is name[constant-1].
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• Initialization

Data objects can be initialized at their declaration. The initialler of a global data
Constants: 40 object must be a constant. Arrays, global or local, must also be initialized with

constants.

Uninitialized data defaults to zero.

Examples:
new i = 1

new j /* j is zero */

new k = ’a’ /* k has character code for letter ’a’ */

new a[] = {1,4,9,16,25} /* a has 5 elements */

new s1[20] = {’a’,’b’} /* the other 18 elements are 0 */

new s2[] = "Hello world..." /* a unpacked string */

Examples of invalid declarations:
new c[3] = 4 /* an array cannot be set to a value */

new i = "Good-bye" /* i must be an array for this initialler */

new q[] /* unknown size of array */

new p[2] = { i + j, k - 3 } /* array initiallers must be constants */

• Progressive initiallers for arrays

The ellipsis operator continues the progression of the initialisation constants for
an array, based on the last two initialized elements. The ellipsis operator (three
dots, or “...”) initializes the array up to its declared size.

Examples:
new a[10] = { 1, ... } /* sets all ten elements to 1 */

new b[10] = { 1, 2, ... } /* sets: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 */

new c[8] = { 1, 2, 40, 50, ... } /* sets: 1, 2, 40, 50, 60, 70, 80, 90 */

new d[10] = { 10, 9, ... } /* sets: 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 */

• Multi-dimensional arrays

Multi-dimensional arrays are arrays that contain references to the sub-arrays.2

That is, a two-dimensional array is an “array of single-dimensional arrays”. Below
are a few examples of declarations of two-dimensional arrays.

2
The current implementation of the Small compiler supports only arrays with up to two dimen-

sions.
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new a[4][3]

new b[3][2] = { { 1, 2 }, { 3, 4 }, { 5, 6 } }

new c[3][3] = { { 1 }, { 2, ...}, { 3, 4, ... } }

new d[2][5] = { !"agreement", !"dispute" }

new e[2][] = { "OK", "Cancel" }

As the last declaration (variable “e”) shows, the final dimension may have an
unspecified length, in which case the length of each sub-array is determined from
the related initializer. Every sub-array may have a different size; in this par-
ticular example, “e[1][5]” contains the letter ”l” from the word “Cancel”, but
“e[0][5]” is invalid because the length of the sub-array “e[0]” is only three cells
(containing the letters “O”, “K” and a zero terminator).

• Tag names

A tag is a label that denotes the objective of —or the meaning of— a variable,
a constant or a function result. Tags are entirely optional, their only purpose
is to allow a stronger compile-time error checking of operands in expressions, of
function arguments and of array indices.

Tags should not be confused with variable types in C and other languages. A
tagged variable is still a cell, which holds an integral number.
� a type specifies the memory layout and range of variables and function results
� a tagname labels the purpose of variables, constants and function results

A tag consists of a symbol name followed by a colon; it has the same syntax as a
Label syntax: 52label. A tag precedes the symbol name of a variable, constant or function. In an

assignment, only the right hand of the “=” sign may be tagged.

Examples of valid tagged variable and constant definitions are:
new bool:flag = true /* "flag" can only hold "true" or "false" */

const error:success = 0

const error:fatal= 1

const error:nonfatal = 2

error:errno = fatal

The sequence of the constants success, fatal and nonfatal could more conve-
“enum” state-
ment: 42niently be declared using an enum instruction, as illustrated below. The enumer-

ation instruction below creates four constants, success, fatal, nonfatal and
error, all with the tag error.

enum error {

success,
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fatal,

nonfatal,

}

A typical use of “tagged” enum’s is in conjunction with arrays. If every field of an
array has a distinct purpose, you can use a tagged enum to declare the size of an
array and to add tag checking to the array usage in a single step:

enum rectangle

{

left,

top,

right,

bottom

}

new my_rect[rectangle] /* array is declared as having 4 cells */

my_rect[left] = 10

my_rect[top] = 5

my_rect[right] = 30

my_rect[bottom] = 12

for (new i = 0; rectangle:i < rectangle; ++i)

my_rect[rectangle:i] *= 2

After the declaration of “my_rect” above, you can access the second field of
my_rect with “my_rect[top]”, but saying “my_rect[1]” will give a parser di-
agnostic (a warning or error message). A tag override (or a tag cast) adjusts a
function, constant or variable to the desired tag name. The for loop at the last
two lines in the preceding example depicts this: the loop variable i is a plain,
untagged cell, an it must be cast to the tag rectangle before as an index in the
array my_rect. Note that the enum construct has created both a constant and a
tag with the name “rectangle”.

Tag names intruduced so far started with a lower case letter; these are “weak”
tags. Tag names that start with an upper case letter are “strong” tags. The
difference between weak and strong tags is that weak tags may, in a few circum-
stances, be dropped implicitly by the Small parser —so that a weakly tagged
expression becomes an untagged expression. The tag checking mechanism verifies
the following situations:
� When the expressions on both sides of a binary operator have a different tag, or

when one of the expressions is tagged and the other is not, the compiler issues
a “tag mismatch” diagnostic. There is no difference between weak and strong
tags in this situation.



Data and declarations • 23

� There is a special case for the assignment operator: the compiler issues a di-
“lvalue”: the
variable on the
left side in an
assigment, see
page 45

agnostic if the variable on the left side of an assignment operator has a tag,
and the expression on the right side either has a different tag or is untagged.
However, if the variable on the left of the assignment operator is untagged, it
accepts an expression (on the right side) with a weak tag. In other words, a
weak tag is dropped in an assignment when the lvalue is untagged.

� Passing arguments to functions follows the rule for assignments. The compiler
issues a diagnostic when the formal parameter (in a function definition) has a
tag and the actual parameter (in the function call) either is untagged or has a
different tag. However, if the formal parameter is untagged, it also accepts a
parameter with any weak tag.

� An array may specify a tag for every dimension, see the “my_rect” example
above. Tag checking array indices follows the rule of binary operator tag check-
ing: there is no difference between weak and strong tags.
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Functions

A function declaration specifies the name of the function and, between paren-
theses, its formal parameters. A function may also return a value. A function
declaration must appear on a global level (i.e. outside any other functions) and
is globally accessible.

If a semicolon follows the function declaration (rather than a statement), theThe preferred
way to declare
forward functions
is at page 31

declaration denotes a forward declaration of the function.

The return statement sets the function result. For example, function sum (see
below) has as result the value of both its arguments added together. The return
expression is optional for a function, but one cannot use the value of a function
that does not return a value.

sum(a, b)

return a + b

Arguments of a function are (implicitly declared) local variables for that function.
The function call determines the values of the arguments.

Another example of a complete definition of the function leapyear (which returns
true for a leap year and false for a non-leap year):

leapyear(y)

return y % 4 == 0 && y % 100 != 0 || y % 400 == 0

The logical and arithmetic operators used in the leapyear example are covered
on pages 48 and 45 respectively.

Usually a function contains local variable declarations and consists of a compound
“assert” state-
ment: 52 statement. In the following example, note the assert statement to guard against

negative values for the exponent.

power(x, y)

{

/* returns x raised to the power of y */

assert y >= 0

new r = 1

for (new i = 0; i < y; i++)

r *= x

return r

}
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• Function arguments (call-by-value versus call-by-reference)

The “faculty” function in the next program has one parameter which it uses in
a loop to calculate the faculty of that number. What deserves attention is that
the function modifies its argument.

/* Calculation of the faculty of a value */

#include <console>

main()

{

print("Enter a value: ")

new v = getvalue()

new f = faculty(v)

printf("The faculty of %d is %d^n", v, f)

}

faculty(n)

{

assert n >= 0

new result = 1

while (n > 0)

result *= n--

return result

}

Whatever (positive) value that “n” had at the entry of the while loop in function
faculty, “n” will be zero at the end of the loop. In the case of the faculty
function, the parameter is passed “by value”, so the change of “n” is local to the
faculty function. In other words, function main passes “v” as input to function
faculty, but upon return of faculty, “v” still has the same value as before the
function call.

Arguments that occupy a single cell can be passed by value or by reference. The
default is “pass by value”. To create a function argument that is passed by
reference, prefix the argument name with the character &.

Example:
swap(&a, &b)

{

new temp = b

b = a

a = temp

}
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To pass an array to a function, append a pair of brackets to the argument name.
You may optionally indicate the size of the array; doing so improves error checking
of the parser.

Example:
addvector(a[], const b[], size)

{

for (new i = 0; i < size; i++)

a[i] += b[i]

}

Arrays are always passed by reference. As a side note, array b in the above
Constant vari-
ables: 19 example does not change in the body of the function. The function argument

has been declared as const to make this explicit. In addition to improving error
checking, it also allows the Small parser to generate more efficient code.

To pass an array of literals to a function, use the same syntax as for array ini-
tiallers: a literal string or the series of array indices enclosed in braces (see page
41; the ellipsis for progressive initiallers cannot be used). Literal arrays can only
have a single dimension.

The following snippet calls addvector to add five to every element of the array
“vect”:

new vect[3] = { 1, 2, 3 }

addvector(vect, {5, 5, 5}, 3)

/* vect[] now holds the values 6, 7 and 8 */

The invocation of function printf with the string "Hello world^n" in the first
“Hello world”
program: 4

ubiquitous program is another example of passing a literal array to a function.

• Named parameters versus positional parameters

In the previous examples, the order of parameters of a function call was impor-
tant, because each parameter is copied to the function argument with the same
sequential position. For example, with the function weekday (which uses Zeller’s
congruence algorithm) defined as below, you call weekday(12,31,1999) to get
the week day of the last day of this century.

weekday(month, day, year)

{

/* returns the day of the week: 0=Saturday, 1=Sunday, etc. */

if (month <= 2)

month += 12, --year

new j = year % 100
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new e = year / 100

return (day + (month+1)*26/10 + j + j/4 + e/4 - 2*e) % 7

}

Date formats vary according to culture and nation. While the format month/day/
year is common in the United States of America, European countries often use the
day/month/year format, and technical publications sometimes standardize on the
year/month/day format. In other words, no order of arguments in the weekday
function is “logical” or “conventional”. That being the case, the alternative way
to pass parameters to a function is to use “named parameters”, as in the next
examples (the three function calls are equivalent):

new wkday1 = weekday( .month = 12, .day = 31, .year = 1999)

new wkday2 = weekday( .day = 31, .month = 12, .year = 1999)

new wkday3 = weekday( .year = 1999, .month = 12, .day = 31)

With named parameters, a period (“.”) precedes the name of the function ar-
gument. The function argument can be set to any expression that is valid for
the argument. The equal sign (“=”) does in the case of a named parameter not
indicate an assignment; rather it links the expression that follows the equal sign
to one of the function arguments.

One may mix positional parameters and named parameters in a function call with
the restriction that all positional parameters must precede any named parameters.

• Default values of function arguments

A function argument may have a default value. When the function call specifies an
argument placeholder instead of a valid argument, the default value applies. The
argument placeholder is the underscore character (_). The argument placeholder
is only valid for function arguments that have a default value.

If the rightmost argument placeholder may simply be stripped from the function
argument list. For example, if function increment is defined as:

increment(&value, incr=1) value += incr

the following function calls are all equivalent:
increment(a)

increment(a, _)

increment(a, 1)
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Default argument values for passed-by-reference arguments are useful to make
the input argument optional. For example, if the function divmod is designed to
return both the quotient and the remainder of a division operation through its
arguments, default values make these arguments optional:

divmod(a, b, &quotient=0, &remainder=0)

{

quotient = a / b

remainder = a % b

}

With the preceding definition of function divmod, the following function calls are
now all valid:

new p, q

divmod(10, 3, p, q)

divmod(10, 3, p, _)

divmod(10, 3, _, q)

divmod(10, 3, p)

Default arguments for array arguments are often convenient to set a default string
or prompt to a function that receives a string argument. For example:

print_error(const message[], const title[] = "Error: ")

{

print(title)

print(message)

print("^n")

}

The next example adds the fields of one array to another array, and by default
increments the first three elements of the destination array by one:

addvector(a[], const b[] = {1, 1, 1}, size = 3)

{

for (new i = 0; i < size; i++)

a[i] += b[i]

}

• Arguments with tag names

A tag, see page 21, optionally precedes a function argument. Using tags improves
the compile-time error checking of the script and it serves as “implicit documen-
tation” of the function. For example, a function that computes the square root
of an input value in fixed point precision may require that the input parameter
is a fixed point value and that the result is fixed point as well. The function
below uses the fixed point extension module, see page 62, and an approximation
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algorithm known as “bisection” to calculate the square root. Note the use of tag
overrides on numeric literals.

fixed:sqroot(fixed:value)

{

new fixed:low = fixed:0

new fixed:high = value

while (high - low > fixed:1)

{

new fixed:mid = (low + high) / fixed:2

if (fmul(mid, mid) < value)

low = mid

else

high = mid

}

return low

}

The bisection algorithm is related to binary search, in the sense that it continu-
ously halves the interval in which the result must lie. A “successive substitution”
algorithm like Newton-Raphson, that takes the slope of the function’s curve into
account, achieves precise results more quickly, but at the cost that a stopping cri-
terion is more difficult to state. State of the art algorithms for computing square
roots combine bisection and Newton-Raphson algorithms.

In the case of an array, the array indices can be tagged as well. For example, a
function that creates the intersection of two rectangles may be written as:

For the “rect-
angle” tag, see
page 22

intersection(dest[rectangle], const first[rectangle], const second[rectangle])

{

if (first[right] > second[left] && first[left] < second[right]

&& first[bottom] > second[top] && first[top] < second[bottom])

{

/* there is an intersection, calculate it using the "min" and

* "max" functions from the "core" library, see page 58.

*/

dest[left] = max(first[left], second[left])

dest[right] = min(first[right], second[right])

dest[top] = max(first[top], second[top])

dest[bottom] = min(first[bottom], second[bottom])

return true

}

else

{

/* "first" and "second" do not intersect */

dest = { 0, 0, 0, 0 }

return false

}

}
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• Variable arguments

A function that takes a variable number of arguments, uses the “ellipsis” oper-
ator (“...”) in the function header to denote the position of the first variable
argument. The function can access the arguments with the predefined functions
numargs, getarg and setarg (see page 58).

Function sum returns the summation of all of its parameters. It uses a variable
length parameter list.

sum(...)

{

new result = 0

for (new i = 0; i < numargs(); ++i)

result += getarg(i)

return result

}

This function could be used in:
new v = sum(1, 2, 3, 4, 5)

A tag may precede the ellipsis to enforce that all subsequent parameters have the
Tags: 21 same tag, but otherwise there is no error checking with a variable argument list

and this feature should therefore be used with caution.

• Coercion rules

If the function argument, as per the function definition (or its declaration), is a
“value parameter”, the caller can pass as a parameter to the function:
� a value, which is passed by value;
� a reference, whose dereferenced value is passed;
� an (indexed) array element, which is a value.

If the function argument is a reference, the caller can pass to the function:
� a value, whose address is passed;
� a reference, which is passed by value because it has the type that the function

expects;
� an (indexed) array element, which is a value.

If the function argument is an array, the caller can pass to the function:
� an array with the same dimensions, whose starting address is passed;
� an (indexed) array element, in which case the address of the element is passed.
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• Recursion

A faculty example function earlier in this chapter used a simple loop. An exam-
“faculty”: 25
“fibonacci”: 8

ple function that calculated a number from the Fibonacci series also used a loop
and an extra variable to do the trick. These two functions are the most popular
routines to illustrate recursive functions, so by implementing these as iterative
procedures, you might be inclined to think that Small does not support recursion.

Well, Small does support recursion, but the calculation of faculties and of Fi-
bonacci numbers happen to be good examples of when not to use recursion.
Faculty is easier to understand with a loop than it is with recursion. Solving
Fibonacci numbers by recursion indeed simplifies the problem, but at the cost
of being extremely inefficient: the recursive Fibonacci calculates the same values
over and over again.

The program below is an implementation of the famous “Towers of Hanoi” game
There exists an
intriguing itera-
tive solution to
the Towers of
Hanoi.

in a recursive function:
/* The Towers of Hanoi, a game solved through recursion */

#include <console>

main()

{

print("How many disks: ")

new disks = getvalue()

move(1, 3, 2, disks)

}

move(from, to, spare, numdisks)

{

if (numdisks > 1)

move(from, spare, to, numdisks-1)

printf("Move disk from pillar %d to pillar %d^n", from, to)

if (numdisks > 1)

move(spare, to, from, numdisks-1)

}

• Forward declarations

The current “reference implementation” of the Small compiler does not require
functions to be declared before their first use. This section documents the re-
quirements of early implementations of the Small compiler and of other imple-
mentations of the Small language (if they exist).

A Small parser may require that functions are defined before they can be used.
That is, the implementation of the function must precede the first call to that
function in the source file. In the cases that this is inconvenient, or impossible
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(as in the case of indirect recursion), you can make a “forward declaration” of
the function. Forward declarations are similar, in syntax and in purpose, to

Native function
interface: pages
33 and 86

declarations of native functions.

To create a forward declaration, precede the function name and its parameter list
with the keyword forward. For compatibility with early versions of Small, and
for similarity with C/C++, an alternative way to forwardly declare a function is
by typing the function header and terminating it with a semicolon (which follows
the closing parenthesis of the parameter list).

The full definition of the function, with a non-empty body, is implemented else-
where in the source file.

• Public functions, function main

A stand-alone program must have the function main. This function is the starting
point of the program. The function main may not have arguments.

A function library need not to have a main function, but it must have it either
a main function, or at least one public function. Function main is the primary
entry point into the compiled program; the public functions are alternative entry
points to the program. The virtual machine can start execution with one of the
public functions. A function library may have a main function to perform one-time
initialization at startup.

To make a function public, prefix the function name with the keyword public.
For example, a text editor may call the public function “onkey” for every key that
the user typed in, so that the user can change (or reject) keystrokes. The onkey
function below would replace every “~” character (code 126 in the ISO Latin-1
character set) by the “hard space” code in the ANSI character table:

public onkey(keycode)

{

if (key==’~’)

return 160 /* replace ~ by hard space (code 160 in Latin-1) */

else

return key /* leave other keys unaltered */

}

Functions whose name starts with the “@” symbol are also public. So an alter-
native way to write the public function onkey function is:

@onkey(keycode)

return key==’~’ ? 160 : key
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The “@” character, when used, becomes part of the function name; that is, in the
last example, the function is called “@onkey”.

• Stock functions

A “stock” function is a function that the Small parser must “plug into” the pro-
gram when it is used, and that it may simply “remove” from the program (without
warning) when it is not used. Stock functions allow a compiler or interpreter to
optimize the memory footprint and the file size of a (compiled) Small program:
any stock function that is not referred to, is completely skipped —as if it were
lacking from the source file.

A typical use of stock functions, hence, is in the creation of a set of “library”
functions. A collection of general purpose functions, all marked as “stock” may
be put in a separate include file, which is then included in any Small script. Only
the library functions that are actually used get “linked” in.

To declare a stock function, prefix the function name with the keyword stock.
Public functions and native functions cannot be declared “stock”.

• Native functions

A Small program can call application-specific functions through a “native func-
tion”. The native function must be declared in the Small program by means of a
function prototype. The function name must be preceded by the keyword native.

Examples:
native getparam(a[], b[], size)

native multiply_matrix(a[], b[], size)

native openfile(const name[])

The names “getparam”, “multiply_matrix” and “openfile” are the internal
names of the native functions; these are the names by which the functions are
known in the Small program. Optionally, you may also set an external name for
the native function, which is the name of the function as the “host application”
knows it. To do so, affix an equal sign to the function prototype followed by the
external name. For example:

native getparam(a[], b[], size) = host_getparam

native multiply_matrix(a[], b[], size) = mtx_mul



34 • Functions

Unless specified explicitly, the external name is equal to the internal name of a
native function. One typical use for explicit external names is to overcome the
maximum name length of a native function: the external name may not exceed
19 characters due to the specification of the executable file format. The internal
name may be longer, but only if the external “alias” is given explicitly.

See page 86 for implementing native functions in C/C++ (on the “host applica-
tion” side).

• User defined operators

The only data type of Small is a “cell”, typically a 32-bit number or bit pattern.
Tags: 21 The meaning of a value in a cell depends on the particular application —it need

not always be a signed integer value. Small allows to attach a “meaning” to a cell
with its “tag” mechanism.

Based on tags, Small also allows you to redefine operators for cells with a specific
purpose. The example below defines a tag “ones” and an operator to add two
“ones” values together (the example also implements operators for subtraction
and negation). The example was inspired by the checksum algorithm of several
protocols in the TCP/IP protocol suite: it simulates one’s complement arithmetic
by adding the carry bit of an arithmetic overflow back to the least significant bit
of the value.

#include <console>

main()

{

new ones: chksum = 0xffffffff

print("Input values in hexadecimal, zero to exit^n")

new ones: value

do

{

printf(">> ")

value = ones: getvalue(.base=16)

chksum = chksum * value

printf("Checksum = %x^n", chksum)

}

while (value)

}

ones: operator+(ones: a, ones: b)

{

const ones:mask = 0xffff /* word mask */

const ones:shift = 16 /* word shift */

/* add low words and high words separately */

new ones: r1 = (a & mask) + (b & mask)
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new ones: r2 = (a >>> shift) + (b >>> shift)

new ones: carry

restart: /* code label (goto target) */

/* add carry of the new low word to the high word, then

* strip it from the low word

*/

carry = (r1 >>> shift)

r2 += carry

r1 &= mask

/* add the carry from the new high word back to the low

* word, then strip it from the high word

*/

carry = (r2 >>> shift)

r1 += carry

r2 &= mask

/* a carry from the high word injected back into the low

* word may cause the new low to overflow, so restart in

* that case

*/

if (carry)

goto restart

return (r2 << shift) | r1

}

ones: operator-(ones: a)

return (a == ones: 0xffffffff) ? a : ~a

ones: operator-(ones: a, ones: b)

return a + -b

The notable line in the example is the line “chksum = chksum + value” in the
loop in function main. Since both the variables chksum and value have the tag
ones, the + operator refers to the user defined operator (instead of the default +
operator). User defined operators are merely a notational convenience. The same
effect is achieved by calling functions explicitly.

The definition of an operator is similar to the definition of a function, with the
difference that the name of the operator is composed by the keyword “operator”
and the character of the operator itself. In the above example, both the unary
- and the binary - operators are redefined. An operator function for a binary
operator must have two arguments, one for an unary operator must have one
argument. Note that the binary - operator adds the two values together after
inverting the sign of the second operand. The subtraction operator thereby refers
to both the user defined “negation” (unary -) and addition operators.

A redefined operator must adhere to the following restrictions:
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� Only the following operators may be redefined: +, -, *, /, %, ++, --, ==, !=, <,
>, <=, >=, and !. That is, the sets of arithmetic and relational operators can be
overloaded, but the bitwise operators, the logical operators and the assignment
operator cannot. The ! operator is a special case.

� You cannot invent new operators; you cannot define operator # for example.
� The precedence level and associativity of the operators, as well as their “arity”

remain as defined. You cannot make an unary + operator, for example.
� The return tag of the relational operators and of the ! operator must be bool.
� The return tag of the arithmetic operators is at your choosing, but you cannot

redefine an operator that is identical to another operator except for its return
tag. For example, you cannot make both
alpha: operator+(alpha: a, alpha: b)
and
beta: operator+(alpha: a, alpha: b).

� Small already defines operators to work on untagged cells, you cannot redefine
the operators with only arguments without tags.

� The arguments of the operator function must be a non-array passed by value.
You cannot make an operator work on arrays.

In the example given above, both arguments of the binary operators have the
same tag. This is not required; you may, for example, define a binary + operator
that adds an integer value to a “ones” number.

Basically, the operation of the Small parser is to check the tag(s) of the operand(s)
that the operator works on and to look up whether a user defined operator exists
for the combination of the operator and the tag(s). However, the parser recognizes
special situations and provides the following features:
� The parser recognizes operators like += as a sequence of + and = and it will call

a user defined operator + if available. In the example program, the line “chksum
= chksum + value” might have been abbreviated to “chksum += value”.

� The parser recognizes commutative operators (+, *, ==, and !=) and it will
swap the operands of a commutative operator if that produces a fit with a user
defined operator. For example, there is usually no need to implement both
“ones:operator+(ones:a, b)”
and “ones:operator+(a, ones:b)”.

� Prefix and postfix operators are handled automatically. You only need to define
one user operator for the ++ and -- operators for a tag.

� The parser calls the ! operator implictly in case of a test without explicit
comparison. For example, in the statement “if (var) ...” when “var” has
tag “ones”, the user defined operator ! will be called for var. The ! operator
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thus doubles as a “test for zero” operator. (In one’s complement arithmetic,
both the “all-ones” and the “all-zeros” bit patterns represent zero.)

� If you wish to forbid an operation, you can “forward declare” the operator
without ever defining it (see page 31). This will flag an error when the user
defined operator is invoked. For example, to forbid the % operator (remainder
after division) on floating point values, you can add the line:
forward float: operator%(float: a, float: b)

User defined operators can be declared “stock” and “native”. In the case of
Native functions:
33a native operator function, the definition should include an external name. For

example (when, on the host’s side, the native function is called float_add):
native float: operator+(float: val, float: val) = float_add

• Floating point and fixed point arithmetic

Small only has intrinsic support for integer arithmetic (integer numbers are num-
bers without a fractional part). Support for floating point arithmetic or fixed
point arithmetic must be implemented through (native) functions. User oper-
ators, then, allow a more natural notation of expressions with fixed or floating
point numbers.

The Small parser has support for literal values with a fractional part, which it
Rational literals:
40
#pragma ratio-
nal: 57

calls “rational numbers”. Support for rational literals must be enabled explicitly
with a #pragma. The #pragma indicates how the rational numbers must be stored
—floating point or fixed point. For fixed point rational values, the #pragma alse
specifies the precision in decimals. Two examples for the #pragma are:

#pragma rational float /* floating point format */

#pragma rational fixed(3) /* fixed point, with 3 decimals */

Since a fixed point value must still fit in a cell, the number of decimals has a
direct influence of the range of a fixed point value. For a fixed point value with 3
decimals, the range would be −2, 147, 482 . . . + 2, 147, 482.

The format for a rational number may only be specified once for the entire Small
program. In an implementation one typically chooses either floating point sup-
port or fixed point support. As stated above, for the actual implementation of
the floating point or fixed point arithmetic, Small requires the help of (native)
functions and user defined operators. A good place to put the #pragma for ra-
tional number support would be in the include file that also defines the functions
and operators.
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The include file for fixed point arithmetic contains definitions like:
native fixed: operator*(fixed: val1, fixed: val2) = fmul

native fixed: operator/(fixed: val1, fixed: val2) = fdiv

For adding two fixed point values together, the default + operator is sufficient, and
the same goes for subtraction. Adding a normal (integer) number to a fixed point
number is different: the normal value must be scaled before adding it. Hence, the
include file implements operators for that purpose too:

stock fixed: operator+(fixed: val1, val2)

return val1 + fixed(val2)

stock fixed: operator-(fixed: val1, val2)

return val1 - fixed(val2)

stock fixed: operator+(val1, fixed: val2)

return fixed(val1) - val2

The + operator is commutative, so one implementation handles both cases. For
the - operator, both cases must be implemented separately.

Finally, the include file forbids the use of the modulus operator (%) on fixed point
values: the modulus is only applicable to integer values:

forward fixed: operator%(fixed: val1, fixed: val2)

forward fixed: operator%(fixed: val1, val2)

forward fixed: operator%(val1, fixed: val2)

By declaring the operator, the Small parser will attempt to use the user defined
operator rather than the default % operator. By not implementing the operator,
the parser will issue an error if a program attempted to use the user defined
operator.
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General syntax

Format
Identifiers, numbers and tokens are separated by spaces, tabs, carriage
returns and “form feeds”. Series of one or more of these separators are
called white space.

Optional semicolons
Semicolons (to end a statement) are optional if they occur at the end

Optional semi-
colons: pages 57
and 69

of a line. Semicolons are required to separate multiple statements on
a single line. An expression may still wrap over multiple lines, however
postfix operators (++, -- and char) must appear on the same line as their
operand.

Comments
Text between the tokens /* and */ (both tokens may be at the same line
or at different lines) and text behind // (up to the end of the line) is
a programming comment. The parser treats a comment as white space.
Comments may not be nested.

Identifiers
Names of variables, functions and constants. Identifiers consist of the
characters a. . .z, A. . .Z, 0. . .9, _ or @; the first character may not be a
digit. The characters @ and _ by themselves are not valid identifiers, i.e.
“_Up” is a valid identifier, but “_” is not.

Small is case sensitive.

A parser may truncate an identifier after a maximum length. The number
of significant characters is implementation defined, but should be at least
16 characters.

Reserved words (keywords)
Statements Operators Directives Other

assert char #assert const
break defined #else enum
case sizeof #emit forward
continue #endif native
default #endinput new
do #endscript operator
else #if public
exit #include static
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for stock
goto
if
return
sleep
switch
while

Next to reserved words, Small also has several predefined constants, you
Predefined con-
stants: 43 cannot use the symbol names of the predefined constants for variable or

function names.

Constants (literals)
Integer numeric constants

binary
0b followed by a series of the digits 0 and 1.

decimal
a series of digits between 0 and 9.

hexadecimal
0x followed by a series of digits between 0 and 9 and the
letters a to f.

In all number radices, and underscore may be used to separate
groups of (hexa-)decimal digits. Underscore characters between
the digits are ignored.

Rational number constants
A rational number is a number with a fractional part. A rational

Rational num-
bers are also
called “real num-
bers” or “float-
ing point num-
bers”

number starts with one or more digits, contains a decimal point
and has at least one digit following the decimal point. For exam-
ple, “12.0” and “0.75” are valid rational numbers. Optionally, an
exponent may be appended to the rational number; the exponent
notation is the letter e (lower case) followed by a signed inte-
ger numeric constant. For example, “3.12e4” is a valid rational
number with an exponent.

Support for rational numbers must be enabled with #pragma ra-
#pragma ratio-
nal: 57

tional directive. Depending on the options set with this direc-
tive, the rational number represents a floating point or a fixed
point number.
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Character constants
A single ASCII character surrounded by single quotes is a char-
acter constant (for example: ’a’, ’7’, ’$’). Character constants
are assumed to be numeric constants.

Control characters

’^a’ Audible alarm (beep)
’^b’ Backspace
’^e’ Escape
’^f’ Formfeed
’^n’ Newline
’^r’ Carriage Return
’^t’ Horizontal tab
’^v’ Vertical tab
’^^’ ˆ the caret itself
’^’’ ’ single quote
’^"’ " double quote
’^ddd;’ character code with decimal code “ddd”

The semicolon after the ^ddd; code is optional. Its purpose is to
give the control character sequence an explicit termination symbol
when it is used in a string constant.

The caret (“^”) is the default control character. You can set a
different control character with the #pragma ctrlchar directive
(page 56).

String constants
String constants are assumed to be arrays with a size that is
sufficient to hold all characters plus a terminating 0. Each string
is stored at a unique position in memory; there is no elimination
of duplicate strings.

An unpacked string is a series of zero or more ASCII characters
surrounded by double quotes. Each array element contains a sin-
gle character.

unpacked string constant:
"the quick brown fox..."

A packed string literal follows the syntax for an unpacked string,
but a “!” precedes the first double quote.
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packed string constant:
!"...packed and sacked the lazy dog"

The syntax for packed literal strings and unpacked literal strings
can be swapped with the #pragma pack directive, see page 57.

In the case of a packed string, the parser packs as many characters
in a cell as will fit. A character is not addressable as a single unit,
instead each element of the array contains multiple characters.
The first character in a “pack” occupies the highest bits of the
array element. In environments that store memory words with the
high byte at the lower address (Big Endian, or Motorola format),
the individual characters are stored in the memory cells in the
same order as they are in the string. A packed string ends with
a zero character and the string is padded (with zero bytes) to a
multiple of cells.

Control characters may be used within strings.

Array constants
A series of numeric constants between braces is an array constant.
Array constants can be used to initialize array variables with (see
page 20) and they can be passed as function arguments (see page
25).

Symbolic constants
A source file declares symbolic constants with the const and the enum
instructions. The const keyword declares a single constant and the enum
defines a list of —usually— sequential constants sharing the same tag
name.

const identifier = constant expression
Creates a symbolic constant with the value of the constant expres-
sion on the right hand of the assignment operator. The constant
can be used at any place where a literal number is valid (for ex-
ample: in expressions, in array declarations and in directives like
“#if” and “#assert”).

enum name { constant list }
The enum instruction creates a series of constants with increment-
ing values. The constant list is a series of identifiers separated by

Identifiers: 39 commas. Unless overruled, the first constant of an enum list has
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the value 0 and every subsequent constant has the value of its
predecessor plus 1.

Both the value of a constant and the increment value can be set
by appending the value to the constant’s identifier. To set a value,
use name = value
in the constant list. To set the increment, use:

name : increment
The increment value is reset to 1 after every constant symbol
declaration in the constant list.

If both an increment and a value should be set for a constant, the
increment (“:” notation) should precede the value (“=” notation.

The name token that follows the enum keyword is optional. If it
is included, this name is used as the tag name for every symbol in
the constant list. In addition, the enum command creates an extra

See page 21 for
examples of the
“enum” constant
declarations

constant with name for the constant name and the tag name. The
value of the last constant is the value of the last symbol in the
constant list plus the increment value of that last constant.

The symbols in the constant list may not be tagged.

A symbolic constant that is defined locally, is valid throughout the block.
A local symbolic constant may not have the same name as a variable
(local or global), a function, or another constant (local or global).

Predefined constants

false 0 (this constant is tagged as bool:)
true 1 (this constant is tagged as bool:)
cellbits The size of a cell in bits; usually 32.
cellmax The largest valid positive value that a cell can hold; usually

2147483647.
cellmin The largest valid negative value that a cell can hold; usually

-2147483648.
charbits The size of a character in bits; 8 when using the ASCII or

ISO Latin-1 characters sets and 16 when using the Unicode
character set.

charmax The largest valid character value; 255 for 8-bit characters and
65535 for 16-bit characters.

charmin The smallest valid character value, currently set at zero (0).
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debug One (1) if the compiler generates code for assertions and run-
time bounds checking, zero (0) otherwise.

Small The version number of the Small compiler scaled by 100 (that
is, for version 1.5 the constant is “150”).

Tag names
A tag consists of an identifier followed by a colon. There may be no white

Identifiers: 39 space between the identifier and the colon.

Predefined tag names

bool For “true/false” flags. The predefined constants true and
false have this tag.

fixed Rational numbers typically have this tag when fixed point
support is enabled (page 57).

float Rational numbers typically have this tag when floating point
support is enabled (page 57).
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Operators and expressions

• Notational conventions

The operation of some operators depends on the specific kinds of operands. There-
fore, operands are notated thus:
e any expression;
v any expression to which a value can be assigned (“lvalue” expressions);
a an array;
f a function.

• Expressions

An expression consists of one or more operands with an operator. The operand
can be a variable, a constant or another expression. An expression followed by a
semicolon is a statement.

Examples of expressions:
v++

f(a1, a2)

v = (ia1 * ia2) / ia3

• Arithmetic
+ e1 + e2

Results in the addition of e1 and e2.

- e1 - e2
Results in the subtraction of e1 and e2.

-e
Results in the arithmetic negation of a (two’s complement).

* e1 * e2
Results in the multiplication of e1 and e2.

/ e1 / e2
Results in the division of e1 by e2. The result is truncated to the
nearest integral value that is less than or equal to the quotient.
Both negative and positive values are rounded towards −∞.
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% e1 % e2
Results in the modulus (remainder of the division) of e1 by e2. The
modulus is always a positive value.

++ v++
increments v by 1; results in the value of v before it is incremented.
++v
increments v by 1; results in the value of v after it is incremented.

-- v--
decrements v by 1; results in the value of v before it is decremented.
--v
decrements v by 1; results in the value of v after it is decremented.

Notes: The unary + is not defined in Small.
The operators ++ and -- modify the operand. The operand must
be an lvalue.

• Bit manipulation
~ ~e

results in the one’s complement of e.

>> e1 >> e2
results in the arithmetic shift to the right of e1 by e2 bits. The
shift operation is signed: the leftmost bit of e1 is copied to vacant
bits in the result.

>>> e1 >>> e2
results in the logical shift to the right of e1 by e2 bits. The shift
operation is unsigned: the vacant bits of the result are filled with
zeros.

<< e1 << e2
results in the value of e1 shifted to the left by e2 bits; the rightmost
bits are set to zero. There is no distinction between an arithmetic
and a logical left shift

& e1 & e2
results in the bitwise logical “and” of e1 and e2.

| e1 | e2
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results in the bitwise logical “or” of e1 and e2.

^ e1 ^ e2
results in the bitwise “exclusive or” of e1 and e2.

• Assignment

The result of an assignment expression is the value of the left operand after the
assignment. The left operand may not be tagged. Tag names: 21

= v = e
assigns the value of e to variable v.
If “v” is an array, it must have an explicit size and “e” must be an
array of the same size; “e” may be a string or a literal array.

Note: the following operators combine an assignment with an arithmetic
or a bitwise operation; the result of the expression is the value of
the left operand after the arithmetic or bitwise operation.

+= v += e
increments v with a.

-= v -= e
decrements v with e

*= v *= e
multiplies v with e

/= v /= e
divides v by e.

%= v %= e
assigns the remainder of the division of v by e to v.

>>= v >>= e
shifts v arithmetically to the right by e bits.

>>>= v >>>= e
shifts v logically to the right by e bits.

<<= v <<= e
shifts v to the left by e bits.

&= v &= e
applies a bitwise “and” to v and e and assigns the result to v.

|= v |= e
applies a bitwise “or” to v and e and assigns the result to v.

^= v ^= e
applies a bitwise “exclusive or” to v and e and assigns the result to v.
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• Relational

A logical “false” is represented by an integer value of 0; a logical “true” is repre-
sented by any value other than 0. Value results of relational expressions are either
0 or 1, and their tag is set to “bool”.

== e1 == e2
results in a logical “true” if e1 is equal to e2.

!= e1 != e2
results in a logical “true” if e1 differs from e2.

Note: the following operators may be “chained”, as in the expression
“e1 <= e2 <= e3”, with the semantics that the result is “1” if all
individual comparisons hold and “0” otherwise.

< e1 < e2
results in a logical “true” if e1 is smaller than e2.

<= e1 <= e2
results in a logical “true” if e1 is smaller than or equal to e2.

> e1 > e2
results in a logical “true” if e1 is greater than e2.

>= e1 >= e2
results in a logical “true” if e1 is greater than or equal to e2.

• Boolean

A logical “false” is represented by an integer value of 0; a logical “true” is repre-
sented by any value other than 0. Value results of Boolean expressions are either
0 or 1, and their tag is set to “bool”.

! !e
results to a logical “true” if e was logically “false”.
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|| e1 || e2
results to a logical “true” if either e1 or e2 (or both) are logically
“true”. The expression e2 is only evaluated if e1 is logically “false”.

&& e1 && e2
results to a logical “true” if both e1 and e2 are logically “true”.
The expression e2 is only evaluated if e1 is logically “true”.

• Miscellaneous
[ ] a[e]

array index: results to cell e from array a.

{ } a{e}
array index: results to character e from “packed” array a.

( ) f(e1,e2,...eN)
results to the value returned by the function f. The function is
called with the arguments e1, e2, . . . eN. The order of evaluation
of the arguments is undefined (an implementation may choose to
evaluate function arguments in reversed order).

? : e1 ? e2 : e3
results in either e2 or e3, depending on the value of e1. The condi-
tional expression is a compound expression with a two part oper-
ator, ? and :. Expression e2 is evaluated if e1 is logically “true”,
e3 is evaluated if e1 is logically “false”.

: tagname: e
tag override; the value of the expression e does not change, but its
tag changes. See page 21 for more information.

, e1, e2
results in e2, e1 is evaluated before e2. If used in function argument
lists or a conditional expression, the comma expression must be
surrounded by parentheses.

defined
returns the value 1 if the symbol is defined. The symbol may be a
constant (page 40), or a global or local variable.
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sizeof
returns the size in cells of the specified variable.

char e char
returns the number of cells that are needed to hold a packed array
of e characters.

• Operator precedence

The table beneath groups operators with equal precedence, starting with the
operator group with the highest precedence at the top of the table.

If the expression evaluation order is not explicitly established by parentheses, it
is determined by the association rules. For example: a*b/c is equivalent with
(a*b)/c because of the left-to-right association, and a=b=c is equivalent with
a=(b=c).
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() function call left-to-right

[] array index (cell)

{} array index (character)

! logical not right-to-left

~ one’s complement

- two’s complement (unary minus)

++ increment

-- decrement

: tag override

char convert number of packed characters to cells

defined symbol definition status

sizeof symbol size in cells

* multiplication left-to-right

/ division

% modulus

+ addition left-to-right

- subtraction

>> arithmetic shift right left-to-right

>>> logical shift right

<< shift left

& bitwise and left-to-right

^ bitwise exclusive or left-to-right

| bitwise or left-to-right

< smaller than left-to-right

<= smaller than or equal to

> greater than

>= greater than or equal to

== equality left-to-right

!= inequality

&& logical and left-to-right

|| logical or left-to-right

? : conditional right-to-left

= assignment right-to-left

*= /= %= += -= >>= >>>= <<= &= ^= |=
, comma left-to-right
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Statements

A statement may take one or more lines, whereas one line may contain two or
more statements.

Control flow statements (if, if–else, for, while, do–while and switch) may
be nested.

Statement label
A label consists of an identifier followed by a colon (:). A label is a “jump

Identifiers: 39 target” of the goto statement.

Each statement may be preceded by a label. There must be a statement
after the label; an empty statement is allowed.

The scope of a label is the function in which it is declared (a goto state-
ment cannot therefore jump out off the current function to another func-
tion).

Compound statement
A compound statement is a series of zero or more statements surrounded
by braces ({ and }). The final brace (}) should not be followed by a
semicolon. Any statement may be replaced by a compound statement. A
compound statement is also called a block. A compound statement with
zero statements is a special case, and it is called an “empty statement”.

Expression statement
Any expression becomes a statement when a semicolon (;) is appended to
it. An expression also becomes a statement when only white space follows
it on the line and the expression cannot be extended over the next line.

Empty statement
An empty statement performs no operation and consists of a compound
block with zero statements; that is, it consists of the tokens “{ }”. Empty
statements are used in control flow statements if there is no action (e.g.
while (!iskey()) {}) or when defining a label just before the closing
brace of a compound statement. An empty statement does not end with
a semicolon.

assert expression
Aborts the program with a run-time error if the expression evaluates to

Example: page 8 logically “false”.
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break
Terminates and exits the smallest enclosing do, for or while statement

Example: page
13from any point within the loop other than the logical end. The break

statement moves program control to the next statement outside the loop.

continue
Terminates the current iteration of the smallest enclosing do, for or while
statement and moves program control to the condition part of the loop.
If the looping statement is a for statement, control moves to the third
expression in the for statement (and thereafter to the second expression).

do statement while ( expression )
Executes a statement before the condition part (the while clause) is eval-
uated. The statement is repeated while the condition is logically “true”.
The statement is at least executed once.

exit expression
Abort the program. The expression is optional. If included, the exit in-
struction returns the expression value (plus the expression tag) to the host
application. The significance and purpose of exit codes is implementation
defined.

for ( expression 1 ; expression 2 ; expression 3 ) statement
All three expressions are optional. Example: page 6

Variable declara-
tions: 18

expression 1 Evaluated only once, and before entering the loop. This
expression may be used to initialize a variable. This ex-
pression may also hold a variable declaration, using the new
syntax. A variable declared in this expression exists only in
the for loop.

expression 2 Evaluated before each iteration of the loop and ends the loop
if the expression results to logically “false”. If omitted, the
result of expression 2 is assumed to be logically “true”.

expression 3 Evaluated after each execution of the statement. Program
control moves from expression 3 to expression 2 for the next
(conditional) iteration of the loop.

The statement for( ; ; ) is equivalent with while (true).

goto label
Moves program control (unconditionally) to the statement that follows
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the specified label. The label must be within the same function as the
goto statement (a goto statement cannot jump out of a function).

if ( expression ) statement 1 else statement 2
Executes statement 1 if the expression results to logically “true”. The

Example: page 5
else clause of the if statement is optional. If the expression results to
logically “false” and an else clause exists, the statement associated with
the else clause (statement 2) executes.

When if statements are nested and else clauses are present, a given else
is associated with the closest preceding if statement in the same block.

return expression
Terminates the current function and moves program control to the state-

Example: page 8 ment following the calling statement.

The expression is optional, but if it is included the value of the expression
is returned as the function result.

sleep expression
Abort the program, but leave it in a re-startable state. The expression
is optional. If included, the sleep instruction returns the expression
value (plus the expression tag) to the host application. The significance
and purpose of exit codes/tags is implementation defined; typically, an
application uses the sleep instruction to allow for light-weight multi-
tasking of several concurrent Small programs, or to implement “latent”
functions.

switch ( expression ) { case list }
Transfers control to different statements within the switch body depend-
ing on the value of the switch expression. The body of the switch state-
ment is a compound statement, which contains a series of “case clauses”.

Each “case clause” starts with the keyword case followed by a constant
list and one statement. The constant list is a series of expressions, sepa-
rated by comma’s, that each evaluates to a constant value. The constant
list ends with a colon. To specify a “range” in the constant list, separate
the lower and upper bounds of the range with a double period (“..”). An
example of a range is: “case 1..9:”.

The switch statement moves control to a “case clause” if the value of one
of the expressions in the constant list is equal to the switch expression
result.
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The “default clause” consists of the keyword default and a colon. The
default clause is optional, but if it is included, it must be the last clause
in the switch body. The switch statement moves control to the “default
clause” is executed if none of the case clauses match the expression result.

Example:
switch (weekday(12,31,1999))

{

case 1, 7: /* 1 == Sunday, 7 == Saturday */

print("weekend")

case 2:

print("Monday")

case 3:

print("Tuesday")

case 4:

print("Wednesday")

case 5:

print("Thursday")

case 6:

print("Friday")

default:

print("invalid week day")

}

while ( expression ) statement
Evaluates the expression and executes the statement if the expression

Example: page 5result yields logically “true”. After the statement has executed, program
control returns to the expression again. The statement is thus executed
while the expression is true.

Directives
All directives must appear first on a line (they may be preceded by white space,
but not by any other characters). All directives start with the character # and
the complete instruction may not span more than one line.

#assert constant expression
Issues a compile time error if the supplied constant expression evaluates
to zero. The #assert directive is most useful to guard against implemen-

See also “Prede-
fined constants”
on page 43

tation defined constructs on which a program may depend, such as the
cell size in bits, or the number of packed characters per cell.

#emit opcode, parameters
The #emit directive serves as an inline assembler. It is currently used
only for testing the abstract machine.
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#endinput
Closes the current file and thereby ignores all the text below the #end-
input directive.

#include "filename" or <filename>
Inserts the contents of the specified file at the current position within
the current file. A filename between double quotes refers to a local file,
and filename between angle brackets refers to a system file. A Small
parser (compiler or interpreter) may treat system files in a special way;
for example, a system file need not be a physical file for a Small parser
that “magically” knows the contents of each system file.

The proposed default extension of include files is “.INC”.

#if constant expression, #else, #endif
Portions of a program may be parsed or be ignored depending on certain
conditions. The Small parser (compiler or interpreter) generates code
only for those portions for which the condition is true.

The directive #if must be followed by a constant expression. To check
whether a variable or constant is defined, use the defined operator.

The #else directive reverses the parsing state. If the parser ignored lines
up to the directive, it starts parsing and if it parsed lines, it stops parsing.
There should only be one #else associated with each #if, but a Small
parser need not impose this restriction.

The #endif directive terminates a program portion that is parsed con-
ditionally. Conditional directives can be nested and each #if directive
must be ended by an #endif directive.

#pragma extra information
A pragma is a hook for a parser to specify additional settings, such as
warning levels or extra capabilities. Common pragmas are:

#pragma ctrlchar character
Defines the character to use to indicate a “control character”. By

Control charac-
ter: 41 default, the control character is “^”.

For example
#pragma ctrlchar ’$’

#pragma dynamic value
Sets the size, in cells, of the memory block for dynamic data (the
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stack and the heap) to the value specified by the expression. The
default size of the dynamic data block is implementation defined.
An implementation may also choose to grow the block on an as-
needed basis. See appendix C for details.

#pragma library name
Sets the name of the (dynamically linked) library or module that
contains required native functions.

#pragma pack value
If value is zero, packed literal strings start with “!"” and un-
packed literal strings with only a double quote (“"”), as described
in this manual at page 41. If value is non-zero, the syntax for
packed and unpacked literal strings is swapped: literal strings
that start with a double quote are packed and literal strings that
start with “!"” are unpacked.

#pragma rational tagname(value)
Enables support for rational numbers (see page 40). The tagname
is the name pf the tag that rational numbers will have; typically
one chooses the names “float” or “fixed”. The value in paranthe-
ses behind tagname is optional: if it is omitted, a rational number
is stored as a “floating point” value according to the IEEE 754
norm; if it is present, a rational number is a fixed precision num-
ber (“scaled integer”) with the specified number of decimals.

#pragma semicolon value
If value is zero, no semicolon is required to end a statement if
that statement is last on a line. Semicolons are still needed to
separate multiple statements on the same line.

When semicolons are optional (the default), a postfix operator
(one of “++”, “--” and “char”) may not be the first token on a
line.

#pragma tabsize value
The number of characters between two consecutive tab positions.
The default value is 8. You may need to set the tab size to avoid
warning 217 (loose indentation) if the source code is indented
alternately with spaces and with tab characters. Alternatively,
by setting the “tabsize” pragma to zero, the parser will no longer
issue warning 217.
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Proposed function library
Since Small is targeted as an application extension language, most of the functions
that are accessible to Small programs will be specific to the host application.
Nevertheless, a small set of functions may prove useful to many environments.

• Core functions

The “core” module consists of a set of functions that support the language itself.
Several of the functions are needed to pull arguments out of a variable argument
list (see page 30).

Since there are only few functions, I have opted to arrange them per category,
rather than alphabetically.

heapspace()
Return the free space on the heap. The stack and the heap occupy a
shared memory area.

funcidx(const name[])
Returns the index of the named public function. A host application runs

amx Exec: 90 a public function from the script by passing the public function’s index
to amx_Exec(). With this function, the script can query the index of
a public function, and thereby return the “next function to call” to the
application.

If no public function with the given name exists, funcidx returns −1.

q

numargs()
Return the number of arguments passed to a function; numargs() is useful
inside functions with a variable argument list.

getarg(arg, index=0)
Retrieve an argument from a variable argument list. When the argument
is an array, the index parameter specifies the index into the array. The
return value is the retrieved argument.

setarg(arg, index=0, value)
Set the value of an argument from a variable argument list. When the
argument is an array, the index parameter specifies the index into the
array. The return value is false if the argument or the index are invalid,
and true on success.
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q

strlen(const string[])
Returns the length of a string, either packed or unpacked, as the number
of characters (not the number of cells).

strpack(dest[], const source[])
Copy a string from source to dest where the destination string will be in
packed format. The source string may either be a packed or an unpacked
string.

strunpack(dest[], const source[])
Copy a string from source to dest where the destination string will be
in unpacked format. The source string may either be a packed or an
unpacked string.

tolower(c)
Returns the character code of the lower case letter of “c” if there is one,
or the character code of “c” if the letter “c” has no lower case equivalent.

toupper(c)
Returns the character code of the upper case letter of “c” if there is one,
or the character code of “c” if “c” has no upper case equivalent.

q

swapchars(c)
Returns the value of c where all bytes in the cell are swapped (the lowest
byte becomes the highest byte).

random(max)
Returns a pseudo-random number in the range 0 – max-1.

max(value1, value2)
Returns the higher value of value1 and value2.

min(value1, value2)
Returns the lower value of value1 and value2.

clamp(value, min=cellmin, max=cellmax)
Returns value if it is in the range min – max; returns min if value is lower
than min; returns max if value is higher than max.

q
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Properties are general purpose names or values. The property list routines
maintain a list of these name/value pairs that is shared among all abstract
machines. The property list is therefore a way for concurrent abstract
machines to exchange information.

All “property maintenance” functions have an optional “id” parameter.
You can use this parameter to indicate which abstract machine the prop-
erty belongs to. (A host application that supports concurrent abstract
machines will usually provide each abstract machine with a unique id.)
When querying (or deleting) a property, the id value that you pass in is
matched to the id values of the list.

A property is identified with its “abstract machine id” plus either a name
or a value. The name-based interface allows you to attach a value (e.g. the
handle of an object) to a name of your choosing. The value-based interface
allows you to attach a string to a number. The difference between the
two is basically the search key versus the output parameter.

All property maintenance functions have a “name” and a “value” param-
eter. Only one of this pair must be filled in. When you give the value,
the getproperty function stores the result in the string argument and
the setproperty function reads the string to store from the string ar-
gument.

The number of properties that you can add is limited only by available
memory.

getproperty(id=0, const name[]=“”, value=cellmin, string[]=“”)
Returns the value of a property when the name is passed in; fills in the
string argument when the value is passed in. The name string may
either be a packed or an unpacked string. If the property does not exist,
this function returns zero.

setproperty(id=0, const name[]=“”, value=cellmin, const string[]=“”)
Add a new property or change an existing property.

deleteproperty(id=0, const name[]=“”, value=cellmin)
Returns the value of the property and subsequently removes it. If the
property does not exist, the function returns zero.

existproperty(id=0, const name[]=“”, value=cellmin)
Returns true if the property exists and false otherwise.
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• Console functions

For testing purposes, the console functions that read user input and that out-
put strings in a scrollable window or on a standard terminal display are often
convenient.

getchar(echo=true)
Read one character from the keyboard and return it. The function can
optionally echo the character on the console window.

getstring(string[], maxlength, bool
pack=false): Read a string from the keyboard. Function getstring stops
reading when either the enter key is typed, or the maximum length is
reached. The maximum length is in characters (not cells). The function
can read both packed and unpacked strings. The return value is the
number of characters read.

getvalue(base=10, end=‘^r’, ...)
Read a value (a signed number) from the keyboard. The getvalue func-
tion allows you to read in a numeric radix from 2 to 36 (the base param-
eter) with decimal radix by default.

By default the input ends when the user types the enter key, but one or
more different keys may be selected (the end parameter and subsequent).
In the list of terminating keys, a positive number (like ’^r’) displays
the key and terminates input, and a negative number terminates input
without displaying the terminating key.

print(const str[], foreground=-1, background=-1)
Prints a simple string on the console. The foreground and background
colours may be optionally set. See CONSOLE.INC for a list of colours.

printf(const format[], ...)
Prints a string with embedded codes:
%c print a character at this position
%d print a decimal number at this position
%f print a floating point number at this position
%r print a fixed point number at this position
%s print a character string at this position

The printf function works similarly to the printf function of the C
language.



62 • Proposed function library

• Fixed point arithmetic

Small does not direcly support fixed point arithmetic. Support for fixed point
artihmetic is built on a set of native functions and user defined operators. A
fixed point number in Small is a 32-bit number with 3 decimals and a range of
−2, 147, 482 to +2, 147, 482.

To convert from integers to cells, use one of the functions fixed or fixedstr.
The function fixed creates a fixed point number with the same integral value as
the input value and a fractional part of zero. Function fixedstr makes a fixed
point number from a string, which can include a fractional part.

To convert back from fixed point numbers to plain cells, use the functions fround
and ffract. Function fround is able to round upwards, to round downwards
(truncation) and to round to the nearest integer. Function ffract gives the
fractional part of a fixed point number, but still stores this as a fixed point number.

Adding and subtracting operations on fixed point values can use the conventional
+ and − operators. For multiplication and division, one must use the fmul and
fdiv functions.

fixed:fixed(value)
Create a fixed point number with the same (integral) value as the param-
eter value.

fixed:fixedstr(const string[])
Create a fixed point number from a string. The string may specify a
fractional part, e.g., “123.45”.

fixed:fmul(fixed:oper1, fixed:oper2)
Multiply two fixed point numbers.

fixed:fdiv(fixed:dividend, fixed:divisor)
Fixed point division.

fixed:ffract(fixed:value)
Returns the fractional part if value.

fround(fixed:value, fround method:method=fround round)
Round a fixed point number and return the value as a cell. The rounding
method may be one of:
fround round round to the nearest integer (default)
fround floor round downwards (truncate)
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fround ceil round upwards

When rounding negative values upwards or downwards, note that −2 is
considered smaller than −1.
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Pitfalls: differences from C
� Small lacks the typing mechanism of C. Small is an “integer-only” variety of

C; there are no structures or unions, and floating point support must be done
user defined operators and the help of native functions.

� Small does not provide “pointers”. For the purpose of passing function argu-
ments by reference, Small provides a “reference” argument, (page 25). The
“placeholder” argument replaces some uses of the NULL pointer (page 27).

� The final dimension of a multi-dimensional array may have an unspecified
length. In C, the first dimension may have an unspecified length. See page
20.

� Escape sequences (“\n”, “\t”, etc.) are replaced by control characters. The
main difference is that the caret (“^”) replaces the backslash (“\”). See “Char-
acter constants” on page 41; see also #pragma ctrlchar on page 56.

� Cases in a switch statement are not “fall through”. Only a single instruction
may (and must) follow each case label. To execute multiple instructions, you
must use a compound statement. The default clause of a switch statement
must be the last clause of the switch statement. More on page 54.

� A break statement breaks out of loops only. In C/C++, the break statement
also ends a case in a switch statement. Switch statements are implemented
differently in Small (see page 54).

� Numbers can have hexadecimal, decimal or binary radix. Octal radix is not
supported. See “Constants” on page 40. Hexadecimal numbers must start with
“0x” (a lower case “x”), the prefix “0X” is invalid.

� The accepted syntax for rational numbers is quite a bit stricter than that of
floating point values in C. Values like “.5” and “6.” are acceptable in C, but
in Small one must write “0.5” and “6.0” respectively. In C, the decimal period
is optional if an exponent is included, so one can write “2E8”; Small does not
accept the upper case “E” (use a lower case “e”) and it requires the decimal
point: e.g. “2.0e8”. See page 40 for more information.

� The “extern” keyword does not exist in Small; the current implementation of
the compiler has no “linking phase”.

� The compiler directives differ from C’s preprocessor commands. Notably, the
#define directive can only add numeric constants, and #ifdef and #ifndef
are replaced by the more general #if directive (see “Directives” on page 55).
To create numeric constants, see also page 42.
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� char is an operator, not a type. See page 50 and the tips on page 65.

� The empty instruction is an empty compound block, not a semicolon (page 52).
This modification avoids a frequent error.

� defined is an operator, not a preprocessor directive. The defined operator
in Small operates on constants (with const and enum), global variables, local
variables and functions.

� The sizeof operator returns the size of a variable in “cells” (not in “bytes”).

� The direction for truncation for the operator / is always towards the smaller
value, where -2 is smaller than -1. The % operator always gives a positive result,
regardless of the signs of the operands. See page 45.

� There is no unary + operator, which is a “no-operation” operator anyway.

� Three of the bitwise operators have different precedence than in C. The prece-
dence levels of the &, ^ and | operators is higher than the relational operators
(Dennis Ritchie explained that these operators got their low precedence levels
in C because early C compilers did not yet have the logical && and || operators,
so the bitwise & and | were used instead).

� Small supports “array assignment”, with the restriction that both arrays must
have the same size. For example, if “a” and “b” are both arrays with 6 cells,
the expression “a = b” is valid. Next to literal strings, Small also supports
literal arrays, allowing the expression “a = {0,1,2,3,4,5}” (where “a” is an
array variable with 6 elements).

� Forward declarations (prototypes) —if provided— must match exactly with the
function definition, parameter names may not be omitted from the prototype
or differ from the function definition.

Assorted tips

• Working with characters and strings

Strings can be in packed or in unpacked format. In the packed format, each cell
will typically hold four characters (in the current implementations, a cell is 32-
bit and a character is often 8 bit). In this configuration, the first character in
a “pack” of four is the highest byte of a cell and the fourth character is in the
lowest byte of each cell.
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A string must be stored in an array. For an unpacked string, the array must
be large enough to hold all characters in the string plus a terminating zero cell.
That is, in the example below, the variable ustring is defined as having five cells,
which is just enough to contain the string with which it is initialized:

new ustring[5] = "test"

In a packed string, each cell contains several characters and the string ends with a
zero character. The char operator helps with declaring the array size to contain
the required number of characters . The example below will allocate enough cells
to hold five packed characters. In a typical implementation, there will be two cells
in the array.

new pstring[5 char] = !"test"

In other words, the char operators divides its left operand by the number of bytes
that fit in a cell and rounds upwards. Again, in a typical implementation, this
means dividing by four and rounding upwards.

You can design routines that work on strings in both packed and unpacked for-
mats. To find out whether a string is packed or unpacked, look at the first cell
of a string. If its value is higher than the maximum possible value of a character
(higher than 255 for 8 bit characters), the string is a packed string. Otherwise it
is an unpacked string.

The code snippet below returns true if the input string is packed and false
See also page
58 for proposed
core functions
that operate on
both packed and
unpacked strings

otherwise (also note the use of tags):
bool: ispacked(string[])

return bool: (string[0] > charmax)

An unpacked string ends with a full zero cell. The end of a packed string is marked
with only a zero character. Since there may be up to four characters in a cell,
this zero character may occur at any of the four positions in the “pack”. The { }
operator extracts a character from a cell in an array. Basically, one uses the cell
index operator (“[ ]”) for unpacked strings and the character index operator (“{
}”) to work on packed strings.

For example, a routine that returns the length in characters of any string (packed
or unpacked) is:

my_strlen(string[])

{

new len = 0

if (ispacked(string))

while (string{len} != ’^0’) /* get character from pack */

++len
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else

while (string[len] != ’^0’) /* get cell */

++len

return len

}

If you make functions to work exclusively on either packed or unpacked strings,
it is a good idea to add an assertion to enforce this condition:

strupper(string[])

{

assert ispacked(string)

for (new i=0; string{i} != ’^0’; ++i)

string{i} = toupper(string{i})

}

Although, in preceding paragraphs we have assumed that a cell is 32 bits wide and
a character is 8 bits, this cannot be relied upon. The size of a cell is implementa-

Predefined con-
stants: 43tion defined; the maximum and minimum values are in the predefined constants

cellmax and cellmin. There are similar predefined constants for characters. One
may safely assume, however, that both the size of a character in bytes and the
size of a cell in bytes are powers of two.

The char operator allows you to determine how many packed characters fit in a
cell. For example:

#if 4 char == 1

/* code that assumes 4 packed characters per cell */

#else

#if 4 char == 2

/* code that assumes 2 packed characters per cell */

#else

#if 4 char == 4

/* code that assumes 1 packed character per cell */

#else

#assert 0 /* unsupported cell/character size */

#endif

#endif

#endif

• Concatenating lines

Small is a free format language, but the parser directives must be on a single line.
Directives: 55Strings may not run over several lines either. When this is inconvenient, you can

use a backslash character (“\”) at the end of a line to “glue” that line with the
next line.
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For example:
#define max_path max_drivename + max_directorystring + \

max_filename + max_extension

You also use the concatenation character to cut long literal strings over multiple
lines. Note that the “\” eats up all trailing white space that comes after it and
leading white space on the next line. The example below prints “Hello world”
with one space between the two words (because there is a space between ”Hello”
and the backslash):

print("Hello \

world")
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Small: the compiler

The Small compiler is currently the only translator (or parser) that implements
the Small language. The Small compiler translates a text file with source code to
a binary file for an abstract machine. The output file format is in appendix C.

• Usage

Assuming that the Small compiler is called “sc” or “sc.exe”, the command line
syntax is:

sc <options> [filename]

The input file name is any legal filename. If no extension is given, “.SMA” is
assumed. The compiler creates an output file with, by default, the same name as
the input file and the extension “.AMX”.

After switching to the directory with the sample programs, the command:
sc hello

should compile the very first “hello world” example (on page 4). Should, because
the command implies that:
� the operating system can locate the “sc” program —you may need to add it to

the search path;
� the Small compiler is able to determine its own location in the file system so

that it can locate the include files —a few operating systems do not support
this and require that you use the -i option (see below).

• Options

The options are:
-a “assembler”, generate a text file with the pseudo-assembler code for the

Small abstract machine, instead of binary code;
-C “compact encoding” of the binary file, which reduces the size a the

output file typically to less than half the original size;
-csize set the character size, size must be 8 (for ASCII & ISO Latin-1) or 16

for Unicode;
-Dpath the “active” directory, where the compiler should search for its input

files and store its output files (this option is not supported on every
platform);
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-dlevel debug level: 0 = none, 1 = bounds checking and assertions only, 2 = full
symbolic information, 3 = full symbolic information and optimizations
disabled;

-ename set the name of the error file (when set, there is no output to the screen);
-iname set the path to the include files;
-oname set the output filename and path;
-P set “packed strings” by default; use the !"..." syntax for unpacked

Packed directive:
57 strings;

-pname the filename of the “prefix file”, this is a file that is parsed before the
input file (as a kind of implicit “include file”);

-Svalue the size of the stack and the heap in cells;
-svalue the number of lines to skip in the input file before starting to compile;
-tvalue the “size” of a tab character, when set to zero (i.e. option -t0) the

compiler will no longer issue warning 217 (loose indentation);
-\ control characters start with “\” instead of “^” (for the sake of simi-

larity with C);
-; semicolons are optional to end a statement if the statement is the last

on the line (this is the default);
-;+ semicolons are required, every statement must be terminated with a

semicolon;
sym=val define constant “sym” with the given (numeric) value, the value is op-

tional;
@filename read (more) options from the specified “response file”.

All options should be separated by at least one space.

Error and warning messages

When the compiler finds an error in a file, it outputs a message giving, in this
order:
� the name of the file
� the line number were the compiler detected the error between parentheses,

directly behind the filename
� the error class (“Error”, “Fatal” or “Warning”)
� an error number between square brackets
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� a descriptive error message

For example:
demo.c(3): Error [001]: expected token: ";", but found "{"

If the “verbose” option is active, the erroneous line is displayed too.

Note: the line number given by the compiler may specify a position behind the
actual error, since the compiler cannot always establish an error before having
analyzed the complete expression.

After termination, the return code of the compiler is:
0 no errors
1 errors found
2 warnings found
3 aborted by user

These return codes may be checked within batch processors (such as the “make”
utility).

• Error categories

Errors are separated into three classes:

Errors Describe situations where the compiler is unable to generate ap-
propriate code. Errors messages are numbered from 1 to 99.

Fatal errors Fatal errors describe errors from which the compiler cannot re-
cover. Parsing is aborted. Fatal error messages are numbered
from 100 to 199.

Warnings Warnings are displayed for unintended compiler assumptions and
common mistakes. Warning messages are numbered from 200 to
299.

• Errors

001 expected token: token, but found token
A required token is omitted.

002 only a single statement (or expression) can follow each “case”
Pitfalls: 64
Compound state-
ment: 52

Every case in a switch statement can hold exactly one statement. To put
multiple statements in a case, enclose these statements between braces
(which creates a combound statement).
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003 reserved
Reserved (unused) error message.

004 function name not defined
Functions: 24

Functions must be defined or prototyped before the first statement.

005 function may not have arguments
The function main() is the program entry point. It may not have argu-
ments.

006 must be assigned to an array
String literals or arrays must be assigned to an array. This error message
may also indicate a missing index (or indices) at the array on the right
side of the “=” sign.

007 assertion failed
#assert direc-
tive: 55 Compile-time assertion failed.

008 must be a constant expression; assumed zero
The size of arrays and the parameters of most directives must be constant
values.

009 invalid array size (negative or zero)
The number of elements of an array must always be 1 or more.

010 illegal function or declaration
The compiler expects a declaration of a global variable or of a function
at the current location, but it cannot interpret it as such.

011 invalid outside functions
The instruction or statement is invalid at a global level. Local labels and
(compound) statements are only valid if used within functions.

012 invalid function call, not a valid address
The symbol is not a function.

013 no entry point (no public functions)
The file does not contain a main function or any public function. The
compiled file thereby does not have a starting point for the execution.

014 invalid statement; not in switch
The statements case and default are only valid inside a switch state-
ment.
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015 “default” must be the last clause in switch statement
Small requires the default clause to be the last clause in a switch
statement.

016 multiple defaults in “switch”
Each switch statement may only have one default clause.

017 undefined symbol symbol
The symbol (variable, constant or function) is not declared.

018 initialization data exceeds declared size
Initialization: 20

An array with a specified size is initialized, but the number of initiallers
exceeds the number of elements specified (e.g. “arr[3]={1,2,3,4};”
the array is specified to have three elements, but there are four ini-
tiallers).

019 not a label: name
A goto statement branches to a symbol that is not a label.

020 invalid symbol name
Symbol name
syntax: 39A symbol may start with a letter, an underscore or an “at” sign (“@”)

and may be followed by a series of letters, digits, underscore characters
and “@” characters.

021 symbol already defined: identifier
The symbol was already defined at the current level.

022 must be lvalue (non-constant)
The symbol that is altered (incremented, decremented, assigned a value,
etc.) must be a variable that can be modified (this kind of variable is
called an lvalue). Functions, string literals, arrays and constants are no
lvalues. Variables declared with the “const” attribute are no lvalues
either.

023 array assignment must be simple assignment
When assigning one array to another, you cannot combine an arithmetic
operation with the assignment (e.g., you cannot use the “+=” operator).

024 “break” or “continue” is out of context
The statements break and continue are only valid inside the context
of a loop (a do, for or while statement). Unlike the languages C/C++
and Java, break does not jump out of a switch statement.
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025 function heading differs from prototype
The number of arguments given at a previous declaration of the function
does not match the number of arguments given at the current declara-
tion.

026 no matching “#if...”
The directive #else or #endif was encountered, but no matching #if
directive was found.

027 invalid character constant
Control charac-
ters: 41 Probably caused by an unknown control character, like “^x”.

028 cannot subscript, not an array
The subscript operators “[” and “]” are only valid with arrays.

029 invalid expression, assumed zero
The compiler could not interpret the expression.

030 compound statement not closed at the end of file
An unexpected end of file occurred. One or more compound statements
are still unfinished (i.e. the closing brace “}” has not been found).

031 unknown directive
The character “#” appears first at a line, but no valid directive was
specified.

032 array index out of bounds
The array index is larger than the highest valid entry of the array.

033 array must be indexed (variable name)
An array as a whole cannot be used in a expression; you must indicate
an element of the array between square brackets.

034 argument does not have a default value (argument index)
You can only use the argument placeholder when the function definition
specifies a default value for the argument.

035 argument type mismatch (argument index)
The argument that you pass is different from the argument that the func-
tion expects, and the compiler cannot convert the passed-in argument
to the required type. For example, you cannot pass the literal value “1”
as an argument when the function expects an array or a reference.
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036 empty statement
Empty com-
pound block:
52

The line contains a semicolon that is not preceded by an expression.
Small does not support a semicolon as an empty statement, use an empty
compound block instead.

037 invalid string (possibly non-terminated string)
A string was not well-formed; for example, the final quote that ends
a string is missing, or the filename for the #include directive was not
enclosed in double quotes or angle brackets.

038 extra characters on line
There were trailing characters on a line that contained a directive (a
directive starts with a # symbol, see page 55).

039 constant symbol has no size
A variable has a size (measured in a number of cells), a constant has
no size. That is, you cannot use a (symbolic) constant with the sizeof
operator, for example.

040 duplicate “case” label (value value)
A preceding “case label” in the list of the switch statement evaluates
to the same value.

041 invalid ellipsis, array size is not known
You used a syntax like “arr[] = { 1, ... };”, which is invalid,
because the compiler cannot deduce the size of the array from the dec-
laration.

042 invalid combination of class specifiers
A function is denoted as both “public” and “native”, which is unsup-
ported.

043 character constant exceeds range for packed string
Usually an attempt to store a Unicode character in a packed string where
a packed character is 8-bits.

044 mixing named and positional parameters
You must either use named parameters or positional parameters for all
parameters of the function.

045 too many function arguments
The maximum number of function arguments is currently limited to 64.
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046 unknown array size (variable name)
For array assignment, the size of both arrays must be explicitly defined,
also if they are passed as function arguments.

047 array sizes must match
For array assignment, the arrays on the left and the right size of the
assignment operator must have the same size.

048 array dimensions must match
For an array assignment, the dimensions of the arrays on both sides of
the “=” sign must match; when passing arrays to a function argument,
the arrays passed to the function (in the function call) must match with
the definition of the function arguments.

049 invalid line continuation
Single line com-
ment: 39 A line continuation character (a backslash at the end of a line) is at

an invalid position, for example at the end of a file or in a single line
comment.

050 invalid range
A numeric range with the syntax “n1 .. n2”, where n1 and n2 are
numeric constants, is invalid. Either one of the values in not a valid
number, or n1 is not smaller than n2.

051 invalid subscript, use “[ ]” operators on major dimensions
You can use the “array character index” operator (braces: “{ }” only
for the last dimension. For other dimensions, you must use the cell index
operator (square brackets: “[ ]”).

052 only the last dimension may be variable length
Except the last dimension, all array dimensions must have an explicit
size.

053 exceeding maximum number of dimensions
The current implementation of the Small compiler only supports arrays
with one or two dimensions.

054 unmatched closing brace
A closing brace (“}”) was found without matching opening brace (“{”).

055 start of function body without function header
An opening brace (“{”) was found outside the scope of a function. This
may be caused by a semicolon at the end of a preceding function header.
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056 local variables and function arguments cannot be public
A local variable or a function argument starts with the character “@”,
which is invalid.

057 Unfinished expression before compiler directive
Compiler directives may only occur between statements, not inside a
statement. This error typically occurs when an expression statement is
split over multiple lines and a compiler directive appears between the
start and the end of the expression. This is not supported.

058 duplicate argument; same argument is passed twice
Named versus
positional pa-
rameters: 26

In the function call, the same argument appears twice, possibly through
a mixture of named and positional parameters.

059 function argument may not have a default value (variable name)
All arguments of public functions must be passed explicitly. Pub-
lic functions are typically called from the host application, who has no
knowledge of the default parameter values. Arguments of user defined
operators are implied from the expression and cannot be inferred from
the default value of an argument.

060 multiple “#else” directives between “#if . . . #endif
Two or more #else directives appear in the body between the matching
#if and #endif.

061 operator cannot be redefined
Only a select set of operators may be redefined, this operator is not one
of them.

062 number of operands does not fit the operator
When redefining an operator, the number of operands that the operator
has (1 for unary operators and 2 for binary operators) must be equal to
the number of arguments of the operator function.

063 operator requires that the function result has a “bool” tag
Logical and relational operators are defined as having a result that is
either true (1) or false (0) and having a “bool” tag. A user defined
operator should adhere to this definition.

064 cannot change predefined operators
One cannot define operators to work on untagged values, for example,
because Small already defines this operation.
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065 function argument may only have a single tag (argument num-
ber)
In a user defined operator, a function argument may not have multiple
tags.

066 function argument may not be a reference argument or an array
(argument number)
In a user defined operator, all arguments must be cells (non-arrays) that
are passed “by value”.

067 variable cannot be both a reference and an array (variable
name)
A function argument may be denoted as a “reference” or as an array,
but not as both.

068 invalid rational number precision in #pragma
The precision was negative or too high. For floating point rational num-
bers, the precision specification should be omitted.

069 rational number format already defined
This #pragma conflicts with an earlier #pragma that specified a different
format.

070 rational number support was not enabled
#pragma ratio-
nal: 57 A rational literal number was encountered, but the format for rational

numbers was not specified.

• Fatal Errors

100 cannot read from file: filename
The compiler cannot find the specified file or does not have access to it.

101 cannot write to file: filename
The compiler cannot write to the specified output file, probably caused
by insufficient disk space or restricted access rights (the file could be
read-only, for example).

102 table overflow: table name
This is an internal error of the compiler, caused by the limited size of its
internal tables. The “table name” is one of the following:

“staging buffer”: the staging buffer holds the code generated for an
expression before it is passed to the peephole optimizer. The staging
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buffer grows dynamically, so an overflow of the staging buffer basically
is an “out of memory” error.

“loop table”: the loop table is a stack used with nested do, for, and
while statements. The table allows nesting of these statements up to 24
levels.

“literal table”: this table keeps the literal constants (numbers, strings)
that are used in expressions and as initiallers for arrays. The literal table
grows dynamically, so an overflow of the literal table basically is an “out
of memory” error.

“compiler stack”: the compiler uses a stack to store temporary informa-
tion it needs while parsing. An overflow of this stack is probably caused
by deeply nested (or recursive) file inclusion or complex expression in-
volving function calls with many arguments.

“option table”: in case that there are more options on the command line
or in the response file than the compiler can cope with.

103 insufficient memory
General “out of memory” error.

104 invalid assembler instruction symbol
An invalid opcode in an #emit directive.

105 numeric overflow, exceeding capacity
A numeric constant, notably a dimension of an array, is too large for the
compiler to handle. For example, when compiled as a 16-bit application,
the compiler cannot handle arrays with more than 32767 elements.

• Warnings

200 symbol is truncated to 19 characters
The symbol is longer than sixteen characters. Truncation may cause
different symbol names to become equal, which may cause error 021 or
warning 219.

201 redefinition of constant (symbol name)
The symbol was previously defined to a different value.
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202 number of arguments does not match definition
At a function call, the number of arguments passed to the function (ac-
tual arguments) differs from the number of formal arguments declared in
the function heading. To declare functions with variable argument lists,
use an ellipsis (...) behind the last known argument in the function
heading; for example: print(formatstring,...); (see page 30).

203 symbol is never used: identifier
A symbol is defined but never used. Public functions are excluded from
the symbol usage check (since these may be called from the outside).

204 symbol is assigned a value that is never used: identifier
A value is assigned to a symbol, but the contents of the symbol are never
accessed.

205 redundant code: constant expression is zero
Where a conditional expression was expected, a constant expression with
the value zero was found, e.g. “while (0)” or “if (0)”. The the
conditional code below the test is never executed, and it is therefore
redundant.

206 redundant test: constant expression is non-zero
Where a conditional expression was expected, a constant expression with
a non-zero value was found, e.g. if (1). The test is redundant, because
the conditional code is always executed.

207 unknown “#pragma”
The compiler ignores the pragma. The #pragma directives may change
between compilers of different vendors and between different versions of
a compiler of the same version.

208 function uses both “return;” and “return value;”
The function returns both with and without a return value. The function
should be consistent in always returning with a function result, or in
never returning a function result.

209 function should return a value
The function does not have a return statement, or it does not have
an expression behind the return statement, but the function’s result is
used in a expression.

210 possible use of symbol before initialization: identifier
A local (uninitialized) variable appears to be read before a value is as-
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signed to it. The compiler cannot determine the actual order of reading
from and storing into variables and bases its assumption of the execution
order on the physical appearance order of statements an expressions in
the source file.

211 possibly unintended assignment
Where a conditional expression was expected, the assignment operator
(=) was found instead of the equality operator (==). As this is a frequent
mistake, the compiler issues a warning. To avoid this message, put
parentheses around the expression, e.g. if ( (a=2) ).

212 possibly unintended bitwise operation
Where a conditional expression was expected, a bitwise operator (& or
|) was found instead of a Boolean operator (&& or ||). As this is a
frequent mistake, the compiler issues a warning. To avoid this message,
put parentheses around the expression, e.g. if ( (a&2) ).

213 tag mismatch
Tags are dis-
cussed on page
21

A tag mismatch occurs when:
� assigning to a tagged variable a value that is untagged or that has a

different tag
� the expressions on either side of a binary operator have different tags
� in a function call, passing an argument that is untagged or that has a

different tag than what the function argument was defined with
� indexing an array which requires a tagged index with no tag or a wrong

tag name

214 possibly a “const” array argument was intended: identifier
Arrays are always passed by reference. If a function does not modify the
array argument, however, the compiler can sometimes generate more
compact and quicker code if the array argument is specifically marked
as “const”.

215 expression has no effect
The result of the expression is apparently not stored in a variable or used
in a test. The expression or expression statement is therefore redundant.

216 nested comment
Small does not support nested comments.

217 loose indentation
Statements at the same logical level do not start in the same column;
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that is, the indents of the statements are different. Although Small is a
free format language, loose indentation frequently hides a logical error
in the control flow.
The compiler can also incorrectly assume loose indentation if the tab

size with which you indented the source code differs from the assumed
size, see #pragma tabsize on page 57 and the compiler option -t at
page 69.

218 old style prototypes used with optional semicolon
When using “optional semicolons”, it is preferred to explicitly declare
forward functions with the forward keyword than using terminating
semicolon.

219 local variable identifier shadows a symbol at a preceding level
A local variable has the same name as a global variable, a function, a
function argument, or a local variable at a lower precedence level. This
is called “shadowing”, as the new local variable makes the previously
defined function or variable inaccessible.

220 exported or native symbol identifier is truncated to value char-
acters
Symbol names for exported or native functions have a more restrictive
length, due to restrictions in the file format, than names of internal func-
tions. Although the symbol name can be used as is internally, it will be
inserted in the native or exported table in its truncated form.

221 label name identifier shadows tag name
A code label (for the goto instruction) has the same name as a previously
defined tag. This may indicate a faultily applied tag override; a typical
case is an attempt to apply a tag override on the variable on the left of
the = operator in an assignment statement.

222 number of digits exceeds rational number precision
A literal rational number has more decimals in its fractional part than
the precision of a rational number supports. The remaining decimals are
ignored.

• Run time errors

The function library that forms the abstract machine returns error codes. These
Run-time errors:
100 error codes encompass both errors for loading and initializing a binary file and

run-time errors due to programmer errors.
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The abstract machine

The abstract machine is a C function library. There are several version: one
that is written in ANSI C, and optimized versions that use GNU C extensions or
assembler subroutines.

Using the abstract machine

To use the abstract machine:
� create an abstract machine for a compiled program with amx_Init,
� register all modules that the program uses with amx_Register,
� run the program with amx_Exec,

The example (in C) below illustrates these steps:

int main(int argc,char *argv[])

{

extern AMX_NATIVE_INFO core_Natives[];

extern AMX_NATIVE_INFO console_Natives[];

AMX amx;

cell ret;

int err;

void *program;

if (argc != 2 || (program = loadprogram(&amx,argv[1])) == NULL) {

printf("Usage: SRUN <filename>\n\n"

"The filename must include the extension\n");

return 1;

} /* if */

amx_Register(&amx, core_Natives, -1);

err = amx_Register(&amx, console_Natives, -1);

if (err == AMX_ERR_NONE)

err = amx_Exec(&amx, &ret, AMX_EXEC_MAIN, 0);

if (err != AMX_ERR_NONE)

printf("Run time error %d on line %ld\n", err, amx.curline);

else if (ret != 0)

printf("%s returns %ld\n", argv[1], (long)ret);

free(program);

return 0;

}
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The cell data type is defined in AMX.H, it currently is a 32-bit integer. The future
may bring 16-bit or 64-bit versions of the abstract machine.

The preceding example checks for run time errors that may occur while executing
the Small program. Such errors are usually flagged by native functions or by

“assert” state-
ment: 52 assert instructions in the source code of the Small program.

The abstract machine API has no functions that read a program from file into
memory. The kernel routines of the abstract machine API do not use dynamic
memory allocation. Routines to allocate memory for the bytecode compiled pro-
gram and to load it from disk must be provided by you. The snippet below is a
typical example that does this:

void *loadprogram(AMX *amx,char *filename)

{

FILE *fp;

AMX_HEADER hdr;

void *program = NULL;

if ((fp = fopen(filename,"rb")) != NULL) {

fread(&hdr, sizeof hdr, 1, fp);

if ((program = malloc((int)hdr.stp)) != NULL) {

rewind(fp);

fread(program, 1, (int)hdr.size, fp);

fclose(fp);

memset(amx,0,sizeof *amx);

if (amx_Init(amx,program) == AMX_ERR_NONE)

return program;

free(program);

} /* if */

} /* if */

return NULL;

}

• Controlling program execution

The two snippets presented above are enough to form an interpreter for Small
programs. A drawback, however, is that the Small program runs uncontrolled
once it is launched with amx_Exec. If the Small program enters an infinit loop,
for example, the only way to break out of it is to kill the complete interpreter —or
at least the thread that the interpreter runs in. Especially during development,
it is convenient to be able to abort a Small program that is running awry.

The abstract machine has a mechanism to monitor the execution of the pseudo-
code that goes under the name of a “debug hook”. The abstract machine calls
the debug hook, a function that the host application provides, at specific events,
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such as the creation and destruction of variables and executing a new statement.
Obviously, the debug hook has an impact on the execution speed of the abstract
machine. To minimize the performance loss, the abstract machine first checks
queries the debug hook whether it want to receive further events. The debug
hook must return an acknowledging value on this initial call.

To install a debug hook, call amx_SetDebugHook before calling amx_Init. For
example, in the loadprogram function presented earlier, add the line:

amx_SetDebugHook(amx, amx_AbortProc);

between the calls to memset and amx_Init. The function amx_AbortProc becomes
the “debug hook” function that is attached to the specified abstract machine. A
minimal implementation of this function is below:

int AMXAPI amx_AbortProc(AMX *amx)

{

switch (amx->dbgcode) {

case DBG_INIT:

return AMX_ERR_NONE;

case DBG_LINE:

/* check whether an "abort" was requested */

return abortflagged ? AMX_ERR_EXIT : AMX_ERR_NONE;

default:

return AMX_ERR_DEBUG;

} /* switch */

}

The debug hook must return AMX_ERR_NONE on the DBG_INIT event, otherwise it
will receive no further events. The only other event captured by this particular
debug hook function is DBG_LINE, which notifies the start of a statement on a new
source code line. If the debug hook returns an error code other than AMX_ERR_NONE
on the DBG_LINE event, the abstract machine aborts execution and returns that
error code.

Exactly how the host program decides whether to continue running or to abort the
abstract machine is implementation dependent. This example uses a global vari-
able, abortflagged, that is set to a non-zero value —by some magical procedure—
if the abstract machine(s) must be aborted.

There exists a more or less portable way to achieve the “magic” referred to in the
previous paragraph. If you set up a signal function to set the abortflagged
variable to 1 on a SIGINT signal, you have an ANSI C-approved way to abort an
abstract machine. The snippet for the signal function appears below:

void sigabort(int sig)

{
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abortflagged=1;

signal(sig,sigabort); /* re-install the signal handler */

}

And somewhere, before calling amx_Exec, you add the line:
signal(SIGINT,sigabort);

Debug hook functions allow you to monitor stack usage, profile execution speed
at the source line level and, well. . . write a debugger. Detailed information on the
debug hook is currently found in a separate document (see also the appendices of
this manual).

Extension modules

An extension module provides a Small program with application-specific (“na-
tive”) functions. Creating an extension module is a three-step process:
1 writing the native functions (in C);
2 making the functions known to the abstract machine;
3 writing an include file that declares the native functions for the Small pro-

grams.

• 1. Writing the native functions

Every native function must have the following prototype:
cell AMX_NATIVE_CALL func(AMX *amx, cell *params);

The identifier “func” is a placeholder for a name of your choice. The AMX type
is a structure that holds all information on the current state of the abstract
machine (registers, stack, etc.); it is defined in the include file AMX.H. The symbol
AMX_NATIVE_CALL holds the calling convention for the function. The file AMX.H
defines it as an empty macro (so the default calling convention is used), but
some operating systems or environments require a different calling convention.
You can change the calling convention either by editing AMX.H or by defining the
AMX_NATIVE_CALLmacro before including AMX.H. Common calling conventions are
_cdecl, _far _pascal and _stdcall.

The params argument points to an array that holds the parameter list of the
function. The value of params[0] is the number of bytes passed to the function
(divide by the size of a cell to get the number of parameters passed to the
function); params[1] is the first argument, and so forth.
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For arguments that are passed by reference, function amx_GetAddr converts the
“abstract machine” address from the “params” array to a physical address. The
pointer that amx_GetAddr returns lets you access variables inside the abstract
machine directly. Function amx_GetAddr also verifies whether the input address
is a valid address.

Strings, like other arrays, are always passed by reference.However, neither packed
See page 124
for details on
the memory lay-
out of multi-
dimensional ar-
rays

strings nor unpacked strings are universally compatible with C strings (on Big
Endian computers, packed strings are compatible with C strings). Therefore, the
abstract machine API provides two functions to convert C strings to and from
Small strings: amx_GetString and amx_SetString.

A native function may abort a program by calling amx_RaiseError with a non-
zero code. The non-zero code is what amx_Exec() returns.

• 2. Linking the functions to the abstract machine

An application uses amx_Register to make any native functions known to the
abstract machine. Function amx_Register expects a list of AMX_NATIVE_INFO
structures. Each structure holds a pointer to the name of the native function and
a function pointer.

Below is a full example of a file that implements two simple native functions:
raising a value to a power and calculating the square root of a value. The list of
AMX_NATIVE_INFO structures is at the bottom of the example.

#include "amx.h"

static cell power(AMX *amx, cell *params)

{

/* power(value, exponent);

* params[1] = value

* params[2] = exponent

*/

cell result = 1;

while (params[2]-- > 0)

result *= params[1];

return result;

}

static cell sqroot(AMX *amx, cell *params)

{

/* sqroot(value);

* params[1] = value

* This routine uses a simple successive approximation algorithm.

*/

cell div = params[1];
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cell result = 1;

while (div > result) { /* end when div == result, or just below */

div = (div + result) / 2; /* take mean value as new divisor */

result = params[1] / div;

} /* while */

return div;

}

AMX_NATIVE_INFO power_Natives[] = {

{ "power", power },

{ "sqroot", sqroot },

{ 0, 0 } /* terminator */

};

In you application, you must also add a call to amx_Register with the list of
native functions, as shown below:

extern AMX_NATIVE_INFO power_Natives[];

err = amx_Register(&amx, power_Natives, -1);

• 3. writing an include file for the native functions

The first step implements the native functions and the second step makes the
functions known to the abstract machine. Now the third step is to make the
native functions known to the Small compiler. To that end, one writes an include
file that contains the prototypes of the native functions and all constants that
may be useful in relation to the native functions.

native power(value, exponent);

native sqroot(value);
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Function reference
With one exception, all functions return an error code if the function fails (the

See page 100 for
the defined error
codes.

exception is amx_NativeInfo). A return code of zero means “no error”.

amx Allot Reserve stack space in the abstract machine

Syntax: amx Allot(AMX *amx,int cells,cell *amx addr,
cell **phys addr)

amx The abstract machine.

cells The number of cells to reserve.

amx addr The address of the allocated cell as the Small program
(that runs in the abstract machine) can access it.

phys addr The address of the cell for C programs to access.

Notes: You can fill the allocated stack space by writing to the address in
phys_addr. Pass amx_addr to the Small function when you call the
function with amx_Exec.

Remove the stack space with amx_Release.

See also: amx_Exec, amx_Release

amx Callback The default callback

Syntax: int amx Callback(AMX *amx, cell index, cell *result,
cell *params)

amx The abstract machine.

index Index into the native function table; it points to the
requested native function.

result The function result (of the native function) should be
returned through this parameter.

params The parameters for the native function, passed as a
list of long integers. The first number of the list is the
number of bytes passed to the native functions (from
which the number of arguments can be computed).
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Returns: The callback should return an error code, or zero for no error. When
See page 100 for
the defined error
codes.

the callback returns a non-zero code, amx_Exec aborts execution.

Notes: The abstract machine has a default callback function, which works
in conjunction with amx_Register. You can override the default
operation by setting a different callback function using function
amx_SetCallback.

If you override the default callback function, you may also need to
provide an alternative function for amx_Registers.

See also: amx_Exec, amx_RaiseError, amx_SetCallback

amx Debug The default debug hook

Syntax: int amx Debug(AMX *amx)

amx The abstract machine.

Returns: The debug hook should return an error code, or zero for no error.

Notes: The default debug function is a stub that immediately returns. Pro-
grams can replace the default debug hook function to monitor sym-
bols and to trace through code step by step. The debugger interface
is described in a separate document and through an example pro-
gram in the distribution: SDBG.C.

See also: amx_SetDebugHook

amx Exec Run code

Syntax: int amx Exec(AMX *amx, long *retval, int index, int
numparams, ...)

amx The abstract machine from which to call a function.

retval Will hold the return value of the called function upon
return.

index An index into the “public function table”; it indicates
the function to execute. See amx_FindPublic for more
information. Use AMX_EXEC_MAIN to start executing at
the main function.
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numparams The number of function parameters that follow.

... Optional parameters for the function. All these pa-
rameters must be cast to the type cell, which is usu-
ally a 32-bit integer.

Notes: This function calls the callback function for any native function call
that the code in the AMX makes. amx_Exec assumes that all native
functions are correctly initialized with amx_Register.

See also: amx_FindPublic, amx_Register

amx FindPublic Return the index of a public function

Syntax: int amx FindPublic(AMX *amx, char *funcname, int *index)

amx The abstract machine.

funcname The name of the public function to find.

index Upon return, this parameter holds the index of the
requested public function.

See also: amx_Exec, amx_FindPubVar, amx_GetPublic, amx_NumPublics

amx FindPubVar Return the address of a public variable

Syntax: int amx FindPubVar(AMX *amx, char *varname,
cell *amx addr)

amx The abstract machine.

varname The name of the public variable to find.

amx addr Upon return, this parameter holds the variable ad-
dress relative to the abstract machine.

Notes: The returned address is the address relative to the “data segment”
in the abstract machine. Use amx_GetAddr to acquire a pointer to
its “physical” address.

See also: amx_FindPublic, amx_GetAddr, amx_GetPubVar, amx_NumPubVars
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amx Flags Return various flags

Syntax: int amx Flags(AMX *amx,unsigned short *flags)

amx The abstract machine.

flags A set of bit flags is stored in this parameter. It is a
set of the following flags:
AMX FLAG CHAR16 if a character is 16-bits rather than

the default of 8 bits
AMX FLAG DEBUG if the program carries symbolic in-

formation

Notes: A typical use for this function is to check whether the compiled
program contains symbolic (debug) information. There is no use
in installing a debugger callback if the program has no symbolic
information.

amx GetAddr Resolve an AMX address

Syntax: int amx GetAddr(AMX *amx,cell amx addr,cell **phys addr)

amx The abstract machine.

amx addr The address relative to the abstract machine.

phys addr A pointer to the variable that will hold the memory
address of the indicated cell.

Notes: This function returns the memory address of an address in the ab-
stract machine. One typically uses this function in an extension
module, because it allows you to access variables inside the abstract
machine.

amx GetPublic Return a public function name

Syntax: int amx GetPublic(AMX *amx, int index, char *funcname)

amx The abstract machine.

index The index of the requested function. Use zero to re-
trieve the name of the first public function.
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funcname The string that will hold the name of the public func-
tion.

Notes: The string should be large enough to hold longest function name
plus the terminating zero byte. Use amx_NameLength to inquire
this length.

See also: amx_FindPublic, amx_GetPubVar, amx_NameLength,
amx_NumPublics

amx GetPubVar Return a public variable name and address

Syntax: int amx GetPubVar(AMX *amx, int index, char *varname,
cell *amx addr)

amx The abstract machine.

index The index of the requested variable. Use zero to re-
trieve the name and address of the first public variable.

varname The string that will hold the name of the public vari-
able.

amx addr Upon return, this parameter holds the variable ad-
dress relative to the abstract machine.

Notes: The string should be large enough to hold longest variable name
plus the terminating zero byte. Use amx_NameLength to inquire
this length.

The returned address is the address relative to the “data segment”
in the abstract machine. Use amx_GetAddr to acquire a pointer to
its “physical” address.

See also: amx_FindPubVar, amx_GetAddr, amx_GetPublic,
amx_NameLength, amx_NumPubVars

amx GetString Retrieve a string from the abstract machine

Syntax: int amx GetString(char *dest, cell *source)

dest A pointer to a character array of sufficient size to hold
the converted source string.
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source A pointer to the source string. Use amx_GetAddr to
convert a string address in the AMX to the physical
address.

Notes: This function converts both packed strings and unpacked strings
from the “Small” format to the “C” format.

See also: amx_SetString

amx GetUserData Return general purpose user data

Syntax: int amx GetUserData(AMX *amx, long tag, void **ptr)

amx The abstract machine.

tag The “tag” of the user data.

ptr Will hold a pointer to the requested user data upon
return.

Notes: The AMX stores multiple “user data” fields. Each field must have a
unique tag. The tag may be any value (as long as it is unique), but
it is usually formed by a four-letter mnemonic through the macro
AMX_USERTAG.

The AMX does not use “user data” in any way. The storage can be
used for any purpose.

See also: amx_SetUserData

amx Init Create an abstract machine, load the binary file

Syntax: int amx Init(AMX *amx, void *program)

amx This variable is initialized with the specific settings of
the abstract machine.

program A pointer to the bytecode stream of the program.

Notes: amx_Init initializes the abstract machine with the settings from
the binary file. Before calling this function, you should set the amx
structure variable to all zeros.
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See also: amx_Release

amx NameLength Return the maximum name length

Syntax: int amx NameLength(AMX *amx, int *length)

amx The abstract machine.

length Will hold the maximum name length upon return.
The returned value includes the space needed for the
terminating zero byte.

See also: amx_GetPublic, amx_GetPubVar

amx NativeInfo Return a structure for amx Register

Syntax: AMX NATIVE INFO *amx NativeInfo(char *name, AMX NATIVE
func)

name The name of the function (as known to the Small pro-
gram)

func A pointer to the native function.

Notes: This function creates a list with a single record for amx_Register.
To register a single function, use the code snippet (where my_solve
is a native function):

err = amx_Register(amx, amx_NativeInfo("solve", my_solve), 1);

This function returns a pointer to a static record.

See also: amx_Register

amx NumPublics Return the number of public functions

Syntax: int amx NumPublics(AMX *amx, int *number)

amx The abstract machine.

number Will hold the number of public functions upon return.
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Notes: The function returns number of entries in the file’s “public func-
tions” table. To retrieve the function names, use amx_GetPublic.

See also: amx_GetPublic, amx_NumPubVars

amx NumPubVars Return the number of public variables

Syntax: int amx NumPubVars(AMX *amx, int *number)

amx The abstract machine.

number Will hold the number of public variables upon return.

Notes: The function returns number of entries in the file’s “public variables”
table. To retrieve the variable names, use amx_GetPubVar.

See also: amx_GetPubVar, amx_NumPublics

amx RaiseError Flag an error

Syntax: int amx RaiseError(AMX *amx, int error)

amx The abstract machine.

error The error code. This is the code that amx_Exec()
returns.

Notes: This function should be called from a native function. It lets the
default callback routine return an error code.

amx Register Make native functions known

Syntax: int amx Register(AMX *amx, AMX NATIVE INFO *list, int
number)

amx The abstract machine.

list An array with structures where each structure holds
a pointer to the name of a native function and a func-
tion pointer. The list is optionally terminated with a
structure holding two NULL pointers.
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number The number of structures in the list array, or -1 if the
list ends with a structure holding two NULL pointers.

Notes: If this function returns the error code AMX_ERR_NOTFOUND, one or
more native functions that are used by the Small program are not
found in the provided list. You can call amx_Register again to
register additional function lists.

See also: amx_NativeInfo

amx Release Free stack space in the abstract machine

Syntax: int amx Release(AMX *amx,cell amx addr)

amx The abstract machine.

amx addr The address of the allocated cell as the Small program
(that runs in the abstract machine) sees it. This value
is returned by amx_Allot.

Notes: amx_Allot allocates memory in descending stack order (the stack
grows downwards). The amx_addr value passed to amx_Release
frees all memory below that address. That is, a single call to
amx_Release can free multiple calls to amx_Allot if you pass the
amx_addr value of the first allocation.

See also: amx_Exec, amx_Release

amx SetCallback Install a callback routine

Syntax: int amx SetCallback(AMX *amx, AMX CALLBACK callback)

amx The abstract machine.

callback The address for a callback function. See function
amx_Callback for the prototype and calling conven-
tion of a callback routine.

Notes: If you change the callback function, you should not use functions
amx_Register or amx_RaiseError. These functions work in con-
junction with the default callback function. To set the default call-
back, set parameter callback to the function amx_Callback.

You may set the callback before or after calling amx_Init.
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amx SetDebugHook Install a debug routine

Syntax: int amx SetDebugHook(AMX *amx, AMX DEBUG debug)

amx The abstract machine.

debug The address for a callback function for the debugger.
See amx_Debug for the prototype and calling conven-
tion of a debug hook routine.

Notes: If you use a non-default debug hook routine, you should set it before
calling amx_Init.

To set the default debug routine, set parameter debug to the func-
tion amx_Debug.

amx SetString Store a string in the abstract machine

Syntax: int amx SetString(cell *dest, char *source, int pack)

dest A pointer to a character array in the AMX where the
converted string is stored. Use amx_GetAddr to con-
vert a string address in the AMX to the physical ad-
dress.

source A pointer to the source string.

pack Non-zero to convert the source string to a packed
string in the abstract machine, zero to convert the
source string to a cell string.

See also: amx_GetString

amx SetUserData Set general purpose user data

Syntax: int amx SetUserData(AMX *amx, long tag, void *ptr)

amx The abstract machine.

tag The “tag” of the user data, which uniquely identifies
the user data. This value should not be zero.
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ptr A pointer to the user data.

Notes: The AMX stores multiple “user data” fields. Each field must have
a unique tag. The tag may be any value (as long as it is unique)
except zero, but it is usually formed by four characters through the
macro AMX_USERTAG.

r = amx_SetUserData(amx, AMX_USERTAG(’U’,’S’,’E’,’R’), "Fire");

The AMX does not use “user data” in any way. The storage can be
used for any purpose.

See also: amx_GetUserData

amx StrLen Get the string length in characters

Syntax: int amx StrLen(cell *cstring, int *length)

cstring The string in the abstract machine.

length This parameter will hold the string length upon re-
turn.

Notes: This function determines the length in characters of the string, not
including the zero-terminating character (or cell). A packed string
occupies less cells than its number if characters.
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Error codes

AMX ERR NONE
No error.

AMX ERR EXIT
Program aborted execution. This is usually not an error.

AMX ERR ASSERT
A run-time assertion failed.

AMX ERR STACKERR
Stack or heap overflow; the stack collides with the heap.

AMX ERR BOUNDS
Array index is out of bounds.

AMX ERR MEMACCESS
Accessing memory that is not allocated for the program.

AMX ERR INVINSTR
Invalid instruction.

AMX ERR STACKLOW
Stack underflow; more items are popped off the stack than were pushed
onto it.

AMX ERR HEAPLOW
Heap underflow; more items are removed from the heap than were inserted
into it.

AMX ERR CALLBACK
There is no callback function, and the program called a native function.

AMX ERR NATIVE
Native function requested the abortion of the abstract machine.

AMX ERR DIVIDE
Division by zero.

AMX ERR MEMORY
General purpose out-of-memory error.

AMX ERR FORMAT
Invalid format of the memory image for the abstract machine.

AMX ERR VERSION
This program requires a newer version of the abstract machine.

AMX ERR NOTFOUND
The requested native functions are not found.

AMX ERR INDEX
Invalid index (invalid parameter to a function).
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Rationale appendix a

The first issue in the presentation of a new computer language should be: why a
new language at all?

Indeed, I did look at several existing languages before I designed my own. Not
surprisingly these days, I specifically considered using Java. It turned out quickly,
though, that Java’s design goals were not my design goals. For example, where
Java promotes distributed computing where “packages” reside on diverse ma-
chines, Small is designed so that the compiled applets can be easily stored in a
compound file together with other data; and where Java is designed to be ar-
chitecture neutral and application independent, Small is designed to be tightly
coupled with an application; native functions are a taboo to some extent in Java
(at least, it is considered “impure”), whereas native functions are “the reason to
be” for Small. From the viewpoint of Small, the intended use of Java is upside
down: native functions are seen as an auxiliary library that the application –in
Java– uses; in Small, native functions are part of “the application” and the Small
program itself is a set of auxiliary functions that the application uses.

A language for scripting applications: Small is targeted as an extension lan-
guage, meant to write application-specific macros or subprograms with. Small is
not the appropriate language for implementing business applications or operating
systems in. Small is designed to be easily integrated with, and embedded in, other
systems/applications.

As an extension language, Small programs typically manipulate objects of the
host application. In an animation system, Small scripts deal with sprites, events
and time intervals; in a communication application, Small scripts handle packets
and connections. I assumed that the host application will make (a subset of)
its resources and functionality available via functions, handles, magic cookies. . .
in a similar way that a contemporary operating system provides an interface to
processes written in C/C++ —e.g., the Win32 API or Linux’ “glibc”. To that
end, Small has a simple and efficient interface to the “native” functions of the
host application.

The first and foremost criterions for the Small language were execution speed
and reliability. Reliability in the sense that a Small program should not be able
to crash the application or tool in which it is embedded —at least, not easily.
Although this limits the capabilities of the language significantly, the advantages
are twofold:
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� the application vendor can rest assured that its application will not crash due
to user additions or macros,

� the user is free to experiment with the language with no (or little) risk of
damaging the application files.

Speed is essential: Small programs would probably run in an abstract ma-
chine (I do not foresee native code Small compilers), and abstract machines are
notoriously slow. I had to make a language that has low overhead and a lan-
guage for which a fast abstract machine can be written. Speed should also be
reliable, in the sense that a Small script should not slow down over time or have
an occaisional performance hiccup. Consequently, Small excludes any required
“background process”, such as garbage collection, and the core of the abstract
machine does not implicitly allocate any system or application resources while it
runs. That is, Small does not allocate memory or open files, not without the help
of a native function that the script calls explicitly.

As Dennis Ritchie said, by intent the C language confines itself to facilities that
can be mapped relatively efficiently and directly to machine instructions. The
same is true for Small, and this is also a partial explication why Small looks so
much like C.

A brief analysis showed that the instruction decoding logic for an abstract ma-
chine would quickly become the bottleneck in the performance of the abstract
machine. To keep the decoding simple, each opcode should have the same size
(excluding operands), and the opcode should fully specify the instruction (includ-
ing the addressing methods, size of the operands, etc.). That meant that for each
operation on a variable, the abstract machine needed a separate opcode for every
combination of variable type, storage class and access method (direct, or derefer-
enced). For even three types (int, char and unsigned int), two storage classes
(global and local) and three access methods (direct, indirect or indexed), a total
of 18 opcodes (3*2*3) are needed to simply fetch the value of a variable.

At the same time, to keep the abstract machine small and manageable, I set a
maximum of approximately 100 instructions.3 With 18 opcodes to load a variable
in a register, 18 more to store a register into a variable, another 18 to get the
address of a variable, etc. . . I was quickly approaching (and exceeding) my limit

3
133 Opcodes are defined at this writing. To exploit performance gains by forcing proper align-

ment of memory words, the current abstract machine uses 32-bit opcodes. There is no technical

limit on the number of opcodes, but in the interest of a small footprint, the number of opcodes

should be restricted.
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of a hundred opcodes.

The languages bob and rexx inspired me to design a typeless language. This
saved me a lot of opcodes. At the same time, the language could no longer be
called a “subset of C”. I was changing the language. Why, then, not go a foot
further in changing the language? This is where a few more design guidelines
came into play:
� give the programmer a general purpose tool, not a special purpose solution
� avoid error prone language constructs; promote error checking
� be pragmatic

A general purpose tool: Small is targeted as an extension language, without
specifying exactly what it will extent. Typically, the application or the tool that
uses Small for its extension language will provide many, optimized routines or
commands to operate on its native objects, be it text, database records or ani-
mated sprites. The extension language exists to permit the user to do what the
application developer forgot, or decided not to include. Rather than providing
a comprehensive library of functions to sort data, match regular expressions, or
draw cubic Bézier splines, Small should supply a (general purpose) means to use,
extend and combine the specific (“native”) functions that an application provides.

Small lacks a comprehensive standard library. By intent, Small also lacks features
like pointers, dynamic memory allocation, direct access to the operating system
or to the hardware, that are needed to remain competitive in the field of general
purpose application or system programming. You cannot build linked lists or
dynamic tree data structures in Small, and neither can you access any memory
beyond the boundaries of the abstract machine. That is not to say that a Small
program can never use dynamic, sorted symbol tables, or change a parameter in
the operating system; it can do that, but it needs to do so by calling a “native”
function that an application provides to the abstract machine.

In other words, if an application chooses to implement the well known peek and
poke functions (from BASIC) in the abstract machine, a Small program can access
any byte in memory, insofar the operating system permits this. Likewise, an
application can provide native functions that insert, delete or search symbols
in a table and allows several operations on them. The proposed core functions
getproperty and setproperty are an example of native functions that build a
linked list in the background.

Promote error checking: As you may have noticed, one of the foremost design
criterions of the C language, “trust the programmer”, is absent from my list of
design criterions. Users of script languages are not always full time programmers;
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and even if they are, Small will probably not be their primary language. Most
Small programmers will keep learning the language as they go, and will even
after years not have become experts. Enough reason, hence, to replace error
prone elements from the C language (pointers) with saver, albeit less general,
constructs (references).4 References are copied from C++. They are nothing else
than pointers in disguise, but they are restricted in various, mostly useful, ways.
Turn to a C++ book to find more justification for references.

I find it disturbing that many, even modern, programming languages have so
little built-in, or easy to use, support for confirming that programs do as the
programmer intended. I am not referring to theoretical correctness (which is too
costly to achieve for anything bigger than toy programs), but practical, easy to use,
verification mechanisms as a help to the programmer. Small provides both compile
time and execution time assertions to use for preconditions, postconditions and
invariants.

The typing mechanism that most programming languages use also an automatic
“catcher” of a whole class of bugs. By virtue of being a typeless language, Small
lacked these error checking abilities. This was clearly a weakness, and I invented
the “tag” mechanism to re-introduce the ability to verify function parameter pass-
ing, array indexing and other operations.

Be pragmatic: The object-oriented programming paradigm has not entirely
lived up to its promise, in my opinion. On the one hand, OOP solves many tasks
in an easier or cleaner way, due to the added abstraction layer. On the other
hand, contemporary object-oriented languages leave you struggling with the lan-
guage as much as with the task at hand. Jean-Paul Tremblay and Paul Sorenson
criticize the C language’s large operator set with the argument that studies have
shown that people have difficulty with memorizing and understanding deep hierar-
chies.5 The same argument also applies to the class hierarchies in object-oriented
programming libraries. Object-oriented programming is not a solution for a non-
expert programmer with little patience for artificial complexity. The criterion “be
pragmatic” is a reminder to seek solutions, not elegancy. Sarcastically, perhaps,
I have attempted to make Small a subject oriented language.

4
You should see this remark in the context of my earlier assertion that many “Small” programmers

will be novice programmers. In my (teaching) experience, novice programmers make many

pointer errors, as opposed to experienced C/C++ programmers.

5
“The Theory and Practice of Compiler Writing”, McGraw-Hill, 1985, pp. 92.
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• Practical design criterions

The fact that Small looks so much like C cannot be a coincidence, and it isn’t.
Small started as a C dialect and stayed that way, because C has a proven track
record. The changes from C were mostly born out of necessity after rubbing out
the features of C that I did not want in a scripting language: no preprocessor, no
pointers, no variable types.

Small, being a typeless language, needed a different means to declare variables. In
the course of modifying this, I also dropped the C requirement that all variables
should be declared at the top of a compound statement. Small is a little more
like C++ in this respect.

C language functions can pass “output values” via pointer arguments. The stan-
dard function scanf, for example, stores the values or strings that it reads from
the console into its arguments. You can design a function in C so that it optionally
returns a value through a pointer argument; if the caller of the function does not
care for the return value, it passes NULL as the pointer value. The standard func-
tion strtol is an example of a function that does this. This technique frequently
saves you from declaring and passing dummy variables. Small replaces pointers
with references, but references cannot be NULL. Thus, Small needed a different
technique to “drop” the values that a function returns via references. Its solution
is the use of an “argument placeholder” that is written as an underscore character
(“ ”); Prolog programmers will recognize it as a similar feature in that language.
The argument placeholder reserves a temporary anonymous data object (called a
“cell” in Small) that is automatically destroyed after the function call.

The temporary cell for the argument placeholder should still have a value. There-
fore, a function must specify for each passed-by-reference argument what value
it will have upon entry when the caller passes the placeholder instead of an ac-
tual argument. By extension, I also added default values for arguments that are
“passed-by-value”. The feature to optionally remove all arguments with default
values from the right was copied from C++.

When speaking of BCPL and B, Dennis Ritchie said that C was invented in part
to provide a plausible way of dealing with character strings when one begins with
a word-oriented language. Small provides two options for working with strings,
packed and unpacked strings. In an unpacked string, every character fits in a cell.
The overhead for a typical 32-bit implementation is large: one character would
take four bytes. Packed strings store up to four characters in one cell, at the cost
of being significantly more difficult to handle if you could only access full cells.
Modern BCPL implementations provide two array indexing methods: one to get
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a word from an array and one to get a character from an array. Small copies
this concept, although the syntax differs from that of BCPL. The packed string
feature also led to the new operator char.

Unicode applications often have to deal with two characters sets: 8-bit for legacy
file formats and standardized transfer formats (like many of the Internet protocols)
and the 16-bit Unicode character set. Although the Small compiler has an option
that makes characters 16-bit (so only two characters fit in a 32-bit cell), a more
convenient approach may be to store 8-bit character strings in packed strings and
16-bit (Unicode) strings in unpacked strings. This turns a weakness in Small —
the need to distinguish packed strings from unpacked strings— into a strength:
Small can make that distinction quite easily.

Notwithstanding the above mentioned changes, plus those in the chapter “Pitfalls:
differences from C” (page 64), I have tried to keep close to C.
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Design of the abstract machine appendix b

The first issue is: why an abstract machine at all? By compiling into the native
machine language of the processor of your choice, the performance will be so much
better.

There is only one real reason to use an abstract machine: cross-platform compat-
ibility of the compiled binary code. At the time that Small was designed, both
16-bit and 32-bit platforms on the 80x86 processor series were important for me.
By the time I can forget about 16-bit operating systems, alternate microprocessors
(like PowerPC and DEC Alpha) may have become essential.

Other reasons (while not essential) are:

� It is far easier to keep a program running in an abstract machine inside its “sand-
box”. For example, an unbounded recursion in an abstract machine crashes the
abstract machine itself, but not much else. If you run native machine code,
the recursive routine may damage the system stack and crash the application.
Although modern operating systems support multithreading, with a separate
stack per thread, the default action for an overrun of any stack is still to shut
down the entire application.

� It is easier to design a language where a data object (an array) can contain
bytecode which is later executed. Modern operating systems separate code and
data sections: you cannot write into a code section and you cannot execute
data; that is, not without serious effort.

The current Small language does not have the ability to execute bytecode from
an array, but the abstract machine is not too tightly coupled to the language.
That is, future versions of the Small language may provide a means to execute
a code stream from a variable without requiring me to redesign the abstract
machine.

My first stab at designing an abstract machine was to look at current implementa-
tions. It appears that it is some kind of a tradition to implement abstract machines
as stack machines, even though the design for microprocessors has moved towards
register based implementations. All the abstract machines I encountered are stack
based. These include:

� Microsoft C/C++ 7.0 (P-code option)
� Lua
� bob

� Java VM (JVM)
� the B language (predecessor of C)
� the Amsterdam Compiler Kit
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Stack machines are surely compact, flexible and simple to implement, but they
are also more difficult to optimize for speed. To see why, let’s analyze a specific
example.

a = b + 2; /* where "a" and "b" are simple variables */

Native code
In 32-bit assembler, this would be:

mov eax, [b]

add eax, 2

mov [a], eax

Stack based abstract machine
Forth is the archetype for a stack machine, I will therefore use it as an example.
The same routine in Forth would be:

b @ 2 + a !

where each letter is an instruction (the “@” stands for “fetch” and “!” for store;
note that stack machines run code in “reverse polish notation”). So these are six
instructions in bytecode, but the code expands to:

b push offset b

@ pop eax

push [eax]

2 push 2

+ pop edx

pop eax

add eax, edx

push eax

a push offset a

! pop edx

pop eax

mov [edx], eax

Two observations: 1. the stack machine makes heavy use of memory (bad for
performance) and 2. the expanded code is quite large when compared to the
native code (12 instructions versus 3).

The expanded code is what a “just-in-time” compiler (JIT) might make from it
(though one may expect an optimizing JIT to reduce the redundant “pushes” and
“pops” somewhat). When running the code in an abstract machine, the abstract
machine must also expand the code, but in addition, it has overhead for fetching
and decoding instructions. This overhead is at least two native instructions per
bytecode instruction (more on this later). For six bytecode instructions, one
should add another 12 native instructions to the 12 native instructions of the
expanded code. And still, the example is greatly simplified, because the code
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runs on the systems stack and uses the systems address space.

In other words, a stack-based abstract machine runs a native 3-instruction code
snippet in 6 bytecode instructions, which turn out to take 24 native instructions,
and more if you want to run the abstract machine on its own stack and in its own
(protected) data space.

Register-based abstract machine
Microprocessors have use registers since their theoretical inception by Von Neu-
mann. Extending this architecture to an abstract machine is only natural. There
are two advantages: the abstract machine instructions map better to the native
instructions (you may actually use the processor’s registers to implement the ab-
stract machine’s registers) and the number of virtual instructions that is needed
to executed a simple expression can be reduced.

As an example, here is the code for the Small “AMX”, a two-register abstract
machine (AMX stands for “Abstract Machine eXecutive”):

load.pri b ; "pri" is the primary register, i.e. the accumulator

const.alt 2 ; "alt" is the alternate register

add ; pri = pri + alt

stor.pri a ; store "pri" in variable "a"

In expanded code, this would be:
load.pri b mov eax, [b]

const.alt 2 mov edx, 2

add add eax, edx

stor.pri a mov [a], eax

The four bytecode instructions map nicely to native instructions. Here again, we
will have to add the overhead for fetching and decoding the bytecode instructions
(2 native instructions per bytecode instruction). When compared to a stack-
based abstract machine, the register-based abstract machine runs twice as fast;
in 12 native instructions, versus 24 native instructions for a stack-based abstract
machine.

There is more: in my experience, stack-based abstract machines are easier to
optimize for size and register-based abstract machines are easier to optimize for
speed. So a register-based abstract machine can indeed be twice as fast as a
stack-based abstract machine.

To elaborate a little further on optimizing: I have intentionally chosen to add
“2” to a variable. Incrementing or decrementing a value by one or two is such a
common case that Forth has a special operator for them: the word “2+” adds 2
to a value. Assuming that a good (stack-based) abstract machine also has special
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opcodes for common operations, using this “2+” word instead of the general
words “2” and “+” removes one bytecode instruction and 3 native instructions.
This would brings the native instruction count down to 21. However, the same
optimization trick applies to the register-based abstract machine. The Small
abstract machine has an “add.c” opcode that adds a constant value to the primary
register. The optimized sequence would be:

load.pri b mov eax, [b]

add.c 2 add eax, 2

stor.pri a mov [a], eax

which results to 3 native instructions plus 6 instructions of overhead for fetching
and decoding the bytecode instructions. The register-based abstract machine
(which needs 9 native instructions) is still approximately twice as fast as the
stack-based abstract machine (at 21 native instructions).

• Threading

In an indirect threaded interpreter, each opcode is an index in a table that con-
tains a “jump address” for every instruction. In a direct threaded interpreter,
the opcode is the jump address itself. Direct threading often requires that all
opcodes are “relocated” to jump addresses upon compilation or upon loading a
pre-compiled file. The file format of the Small abstract machine is designed such
that both indirect and direct threading are possible.

A threaded abstract machine is conventionally written in assembler, because most
high level languages cannot store label addresses in an array. The GNU C compiler
(GCC), however, extends the C language with an unary “&&” operator that returns
the address of a label. This address can be stored in a “void *” variable type
and it can be used later in a goto instruction. Basically, the following snippet
does the same a “goto home”:

void *ptr = &&home;

goto *ptr;

The ANSI C version of the abstract machine uses a large switch statement to
choose the correct instructions for every opcode. Due to direct threading, the
GNU C version of the abstract machine runs approximately twice as fast as the
ANSI C version. Fortunately, GNU C runs on quite a few platforms. This means
that the fast GNU C version is still fairly portable.

• Optimizing in assembler
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The following discussion assumes an Intel 80386 or compatible processor. The
same technique also applies to 16-bit processors and to processors of other brands,
but the names (and number) of registers will be different.

It is beneficial to use the processor’s registers to implement the registers of the
abstract machine. The details of the abstract machine for the Small system are
in appendix C. Further assumptions are:
� PRI is an alias for the processor’s register EAX and ALT is EDX
� ESI is the code instruction pointer (CIP)
� EDI points to the start of the data segment, ECX is the stack pointer (STK), EBX

is the frame pointer (FRM) and EBP is available as a general purpose intermediate
register; the remaining registers in the AMX (STP and HEA, see appendix C)
are local variables.

Every opcode has a set of machine instructions attached to it, plus a trailer that
branches to the next instruction. The trailer is identical for every opcode. As an
example, below is the implementation of the ADD.C opcode:

add eax, [esi] ; add constant

add esi, 4 ; skip constant

; the code below is the same for every instruction

add esi, 4 ; pre-adjust instruction pointer

jmp [esi-4] ; jump to address

Note that the “trailer” which chains to the next instruction via (direct) threading
consists of two instructions; this trailer was the origin of the premise of a 2-
instruction overhead for instruction fetching and decoding in the earlier analysis.

In the implementation of the abstract machine, one can hand-optimize the se-
quences further. In the above example, the two “add esi, 4” instructions can,
of course, be folded into a single instruction that adds 8 to ESI.
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Abstract machine reference appendix c

The abstract machine consists of a set of registers, a proposed (or imposed) mem-
ory layout and a set of instructions. Each is discussed in a separate section.

• Register layout

The abstract machine mimics a dual-register processor. In addition to the two
“general purpose” registers, it has a few internal registers. Below is the list with
the names and description of all registers:
PRI primary register (ALU, general purpose).
ALT alternate register (general purpose).
FRM stack frame pointer, stack-relative memory reads and writes are relative to

the address in this register.
CIP code instruction pointer.
DAT offset to the start of the data.
COD offset to the start of the code.
STP stack top.
STK stack index, indicates the current position in the stack. The stack runs

downwards from the STP register towards zero.
HEA heap pointer. Dynamically allocated memory comes from the heap and the

HEA register indicates the top of the heap.

Notably missing from the register set is a “flags” register. The abstract machine
keeps no separate set of flags; instead all conditional branches are taken depending
on the contents of the PRI register.

• Memory image

The heap and the stack share a memory block. The stack grows downwards from
STP towards zero; the heap grows upwards. An exception occurs when the STK and
the HEA registers collide. (An exception means that the abstract machine aborts
with an error message. There is currently no exception trapping mechanism.)

The figure below is a proposed memory image layout. Alternative layouts are
possible. Specifically, an implementation may choose to keep the heap and the
stack in a separate memory block next to the memory block for the code, the data
and the prefix. The top of the figure represents the lowest address in memory.

The file format is a dump of the memory image. That is, the binary file starts
with the prefix, and is followed by the code and data sections. The heap and
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Figure 1: Memory layout of the abstract machine

stack sections are not stored in the binary file, the abstract machine can build
them from information in the “prefix” section. The prefix also contains startup
information, and the definitions of native and public functions.

All multiple byte values are stored with the low byte at the lower address (Little
Endian). This is valid for the prefix and for the generated code and data.

size 4 bytes size of the memory image, excluding the stack/heap
magic 2 bytes must be F1E0 (hexadecimal)
version 2 bytes required minimal version of the abstract machine
flags 2 bytes flags, see below
defsize 2 bytes size of a structure in the “native functions” and the “public

functions” tables
cod 4 bytes start of the code section
dat 4 bytes start of the data section
hea 4 bytes initial value of the heap, end of the data section
stp 4 bytes stack top value (the total memory requirements)
cip 4 bytes starting address (main() function), -1 if none
num-pub 2 bytes number of public functions
off-pub 4 bytes offset to the “public functions” table
num-ntv 2 bytes number of native functions
off-ntv 4 bytes offset to the “native functions” table
num lib 2 bytes number of external libraries (dynamically loaded)
off-lib 4 bytes offset to the table of libraries
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num-pvar 2 bytes number public variables
off-pvar 4 bytes offset to the “public variables” table
public variable public functions table (see below)
native variable native functions table (see below)
library variable library table (see below)
pubvar variable public variables table (see below)

Each bit in the flags field contains one setting. Currently, the defined settings
are:

0 if set, a character (in a packed string) is 16-bit
1 if set, the file contains symbolic (debug) information

The fixed part of the prefix followed by a series of tables. Each table contains zero
or more records. The size of these records is in the defsize field in the prefix.
The records in the public functions table have the format:

address 4 bytes the address (relative to COD) of the function
name defsize - 4 the name of the public function

The format of the native functions table is very similar (see below). The order
of the records in the table is important, because the parameter of the SYSREQ.C
instruction is an index into the native functions table.

address 4 bytes used internally, should be zero in the file
name defsize - 4 the name of the native function

The library table has the same format as the native functions table. The “ad-
dress” field is used internally and should be zero in the file. The “name” field
holds the library name.

The “public variables” table, again, has a similar record lay out as the public
functions table. The address field of a public variable contains the variable’s
address relative to the DAT section.

• Instruction reference

Every instruction consists of an opcode followed by zero or one parameters. Each
opcode is one byte in size; an instruction parameter has the size of a cell (usually
four bytes). A few “debugging” instructions (at the end of the list) form an
exception to these rules: they have two or more parameters and those parameters
are not always cell sized.
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Many instructions have implied registers as operands. This reduces the number
of operands that are needed to decode an instruction and, hence, it reduces the
time needed to decode an instruction. In several cases, the implied register is part
of the name of the opcode. For example, PUSH.pri is the name of the opcode
that stores the PRI register on the stack. This instruction has no parameters: its
parameter (PRI) is implied in the opcode name.

The instruction reference is ordered by opcode. The description of two opcodes
is sometimes combined in one row in the table, because the opcodes differ only in
a source or a destination register. In these cases, the opcodes and the variants of
the registers are separated by a “/”.

The “semantics” column gives a brief description of what the opcode does. It uses
the C language syntax for operators, which are the same as those of the Small
language. An item between square brackets indicates a memory access (relative
to the DAT register, except for jump and call instructions). So, PRI = [address]
means that the value read from memory at location DAT + address is stored in
PRI.

opcode mnemonic parameters semantics
1/2 LOAD.pri/alt address PRI/ALT = [address]

3/4 LOAD.S.pri/alt offset PRI/ALT = [FRM + offset]

5/6 LREF.pri/alt address PRI/ALT = [ [address] ]

7/8 LREF.S.pri/alt offset PRI/ALT = [ [FRM + offset] ]

9 LOAD.I PRI = [PRI] (full cell)

10 LODB.I number PRI = “number” bytes from [PRI] (read 1/2/4 bytes)

11/12 CONST.pri/alt value PRI/ALT = value

13/14 ADDR.pri/alt offset PRI/ALT = FRM + offset

15/16 STOR.pri/alt address [address] = PRI/ALT

17/18 STOR.S.pri/alt offset [FRM + offset] = PRI/ALT

19/20 SREF.pri/alt address [ [address] ] = PRI/ALT

21/22 SREF.S.pri/alt offset [ [FRM + offset] ] = PRI/ALT

23 STOR.I [ALT] = PRI (full cell)

24 STRB.I number “number” bytes at [ALT] = PRI (write 1/2/4 bytes)

25 LIDX PRI = [ ALT + (PRI × cell size) ]

26 LIDX.B shift PRI = [ ALT + (PRI << shift) ]

27 IDXADDR PRI = ALT + (PRI × cell size) (calculate indexed address)

28 IDXADDR.B shift PRI = ALT + (PRI << shift) (calculate indexed address)

29/30 ALIGN.pri/alt number Little Endian: PRI/ALT =̂ cell size− number
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31 LCTRL index PRI is set to the current value of any of the special registers.

The index parameter must be: 0=COD, 1=DAT, 2=HEA,

3=STP, 4=STK, 5=FRM, 6=CIP (of the next instruction)

32 SCTRL index set the indexed special registers to the value in PRI.

The index parameter must be: 2=HEA, 4=STK, 5=FRM,

6=CIP

33/34 MOVE.pri/alt PRI=ALT / ALT=PRI

35 XCHG Exchange PRI and ALT

36/37 PUSH.pri/alt [STK] = PRI/ALT, STK = STK − cell size

38 PUSH.R value Repeat value ×: [STK] = PRI, STK = STK − cell size

39 PUSH.C value [STK] = value, STK = STK − cell size

40 PUSH address [STK] = [address], STK = STK − cell size

41 PUSH.S offset [STK] = [FRM + offset], STK = STK − cell size

42/43 POP.pri/alt STK = STK + cell size, PRI/ALT = [STK]

44 STACK value ALT = STK, STK = STK + value

45 HEAP value ALT = HEA, HEA = HEA + value

46 PROC [STK] = FRM, STK = STK − cell size, FRM = STK

47 RET STK = STK + cell size, FRM = [STK],

STK = STK + cell size, CIP = [STK],

The RET instruction cleans up the stack frame and returns

from the function to the instruction after the call.

48 RETN STK = STK + cell size, FRM = [STK],

STK = STK + cell size, CIP = [STK],

STK = STK + [STK]

The RETN instruction removes a specified number of bytes

from the stack. The value to adjust STK with must be

pushed prior to the call.

49 CALL address [STK] = CIP + 5, STK = STK − cell size

CIP = address

The CALL instruction jumps to an address after storing the

address of the next sequential instruction on the stack.

50 CALL.pri [STK] = CIP + 1, STK = STK − cell size

CIP = PRI

jumps to the address in PRI after storing the address of the

next sequential instruction on the stack.

51 JUMP address CIP = address (jump to the address)

52 JREL offset CIP = CIP + offset (jump “offset” bytes from current

position)
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53 JZER address if PRI == 0 then CIP = [CIP + 1]

54 JNZ address if PRI != 0 then CIP = [CIP + 1]

55 JEQ address if PRI == ALT then CIP = [CIP + 1]

56 JNEQ address if PRI != ALT then CIP = [CIP + 1]

57 JLESS address if PRI < ALT then CIP = [CIP + 1] (unsigned)

58 JLEQ address if PRI <= ALT then CIP = [CIP + 1] (unsigned)

59 JGRTR address if PRI > ALT then CIP = [CIP + 1] (unsigned)

60 JGEQ address if PRI >= ALT then CIP = [CIP + 1] (unsigned)

61 JSLESS address if PRI < ALT then CIP = [CIP + 1] (signed)

62 JSLEQ address if PRI <= ALT then CIP = [CIP + 1] (signed)

63 JSGRTR address if PRI > ALT then CIP = [CIP + 1] (signed)

64 JSGEQ address if PRI >= ALT then CIP = [CIP + 1] (signed)

65 SHL PRI = PRI << ALT

66 SHR PRI = PRI >> ALT (without sign extension)

67 SSHR PRI = PRI >> ALT with sign extension

68 SHL.C.pri value PRI = PRI << value

69 SHL.C.alt value ALT = ALT << value

70 SHR.C.pri value PRI = PRI >> value (without sign extension)

71 SHR.C.alt value ALT = ALT >> value (without sign extension)

72 SMUL PRI = PRI * ALT (signed multiply)

73 SDIV PRI = PRI / ALT (signed divide), ALT = PRI mod ALT

74 SDIV.alt PRI = ALT / PRI (signed divide), ALT = ALT mod PRI

75 UMUL PRI = PRI * ALT (unsigned multiply)

76 UDIV PRI = PRI / ALT (unsigned divide), ALT = PRI mod ALT

77 UDIV.alt PRI = ALT / PRI (unsigned divide), ALT = ALT mod PRI

78 ADD PRI = PRI + ALT

79 SUB PRI = PRI − ALT

80 SUB.alt PRI = ALT − PRI

81 AND PRI = PRI & ALT

82 OR PRI = PRI |ALT

83 XOR PRI = PRI ˆ ALT

84 NOT PRI = !PRI

85 NEG PRI = −PRI

86 INVERT PRI = ~PRI

87 ADD.C value PRI = PRI + value

88 SMUL.C value PRI = PRI * value

89/90 ZERO.pri/alt PRI/ALT = 0



118 • Abstract machine reference

91 ZERO address [address] = 0

92 ZERO.S offset [FRM + offset] = 0

93/94 SIGN.pri/alt sign extent the byte in PRI or ALT to a cell

95 EQ PRI = PRI == ALT ? 1 : 0

96 NEQ PRI = PRI != ALT ? 1 : 0

97 LESS PRI = PRI < ALT ? 1 : 0 (unsigned)

98 LEQ PRI = PRI <= ALT ? 1 : 0 (unsigned)

99 GRTR PRI = PRI > ALT ? 1 : 0 (unsigned)

100 GEQ PRI = PRI >= ALT ? 1 : 0 (unsigned)

101 SLESS PRI = PRI < ALT ? 1 : 0 (signed)

102 SLEQ PRI = PRI <= ALT ? 1 : 0 (signed)

103 SGRTR PRI = PRI > ALT ? 1 : 0 (signed)

104 SGEQ PRI = PRI >= ALT ? 1 : 0 (signed)

105 EQ.C.pri value PRI = PRI == value ? 1 : 0

106 EQ.C.alt value PRI = ALT == value ? 1 : 0

107/108 INC.pri/alt PRI = PRI + 1 / ALT = ALT + 1

109 INC address [address] = [address] + 1

110 INC.S offset [FRM + offset] = [FRM + offset] + 1

111 INC.I [PRI] = [PRI] + 1

112/113 DEC.pri/alt PRI = PRI − 1 / ALT = ALT − 1

114 DEC address [address] = [address] − 1

115 DEC.S offset [FRM + offset] = [FRM + offset] − 1

116 DEC.I [PRI] = [PRI] − 1

117 MOVS number Copy memory from [PRI] to [ALT]. The parameter

specifies the number of bytes. The blocks should not

overlap.

118 CMPS number Compare memory blocks at [PRI] and [ALT]. The parameter

specifies the number of bytes. The blocks should not

overlap.

119 FILL number Fill memory at [ALT] with value in [PRI]. The parameter

specifies the number of bytes, which must be a multiple

of the cell size.

120 HALT 0 Abort execution (exit value in PRI), parameters other than 0

have a special meaning.

121 BOUNDS value Abort execution if PRI > value or if PRI < 0

122 SYSREQ.pri call system service, service number in PRI

123 SYSREQ.C value call system service

124 FILE size ord name source file information pair: name and ordinal (see below)
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125 LINE line ord source line number and file ordinal (see below)

126 SYMBOL sze off flg name symbol information (see below)

127 SRANGE lvl size symbol range and dimensions (see below)

128 JUMP.pri CIP = PRI (indirect jump)

129 SWITCH address Compare PRI to the values in the case table (whose address

is passed) and jump to the associated address.

130 CASETBL . . . A variable number of case records follows this opcode, where

each record takes two cells. See the notes below for details

on the case table lay-out.

131/132 SWAP.pri/alt [STK] = PRI/ALT and PRI/ALT = [STK]

133 PUSHADDR offset [STK] = FRM + offset, STK = STK − cell size

• Compact file format

The default file format that the compiler generates is a very simple format that
the abstract machine can execute directly after loading (or mapping) the file into
memory. That is, if the machine uses Little Endian byte ordering. On a Big
Endian processor all cells must be swapped. The alternative, “compact binary
files”, not only have a reduced size, the file format is also universal for Big Endian
and Little Endian computers.

The header of the module (see page 113) and all tables (public functions, native
functions, libraries public variables) are not compressed. The data that follows
these tables is encoded with variable length codes: every four-byte cell is encoded
in one to five bytes.

The highest bit of each byte is a “continuation” bit. If it is set, another bytes
with seven more significant bits follows. The most significant 7 bits are stored
first (at the lower file offset/memory address). When a series of bytes have been
decoded, bit 6 (the next to most signification bit) of the first byte is repeated to
fill the complete 32-bits.

Decoding examples:

0x21 0x00000021

0x41 0xffffffc1

0x80 0x41 0x00000041

0x7f 0xffffffff
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• Cross-platform support

There is some level of cross-platform support in the abstract machine. Both Big
Endian and Little Endian memory addressing schemes are in common use today.
Big Endian is the “network byte order”, as it is used for various network protocols,
notably the Internet protocol suite. The Intel 80x86 and Pentium CPU series use
Little Endian addressing.

The abstract machine is optimized for manipulating “cells”, 32-bit quantities.
Bytes or 16-bit words can only be read or written indirectly, by first generating
an address and then use the LODB.I or STRB.I instructions. The ALIGN.pri
instruction helps in generating the address.

The abstract machine assumes that when multiple characters are packed in a cell,
the first character occupies the highest bits in the cell and the last character is in
the lowest bits of the cell. This is how the Small language stores packed strings.

Packed strings:
41 On a Big Endian computer, the order of the characters is “natural” in the sense

that the first character of a pack is at the lowest address and the last character is
at the highest address. On a Little Endian computer, the order of the characters
is reversed. When accessing the second character of a pack, you should read/write
from a lower address then when accessing the first character of the pack.

The Small compiler could easily generate the required extra code to adjust the
address for each character in the pack. The draw-back would be that a module
written for a Big Endian computer would not run on a Little Endian computer and
vice versa. So instead, the Small compiler generates a special ALIGN instruction,
whose semantics depend on whether the abstract machine runs on a Big Endian or
a Little Endian computer. More specifically, the ALIGN instruction does nothing
on a Big Endian computer and performs a simple bitwise “exclusive or” operation
on a Little Endian computer.

• The ‘‘switch’’ instruction and case table lay-out

The SWITCH instruction compares the value of PRI with the case value in every
record in the associated case table and if it finds a match, it jumps to the address
in the matching record. The SWITCH opcode has one parameter, which is the
address of the case table in de code segment (i.e., the address is relative to COD).
At this address, a CASETBL opcode should appear.

Every record in a case table, except the first, contains a case value and a jump
address, in that order. The first record keeps the number of subsequent records
in the case table in its first cell and the “none-matched” jump address in its
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second cell. If none of the case values of the subsequent records matches PRI, the
SWITCH instruction jumps to this “none-matched” address. Note again that the
first record is excluded in the “number of records” field in the first record.

The records in the case table are sorted on their value. An abstract machine may
take advantage of this lay-out to search through the table with a binary search.

• Debugger support

There is limited support for source level debuggers, built-in in the instruction
set. These opcodes are not “regular” in the sense that they have more than one
parameter.

The size parameter of the FILE and SYMBOL instructions gives the length of the
instruction in bytes, excluding the bytes for the opcode and of the size field itself.
The value of the size should always be a multiple of the size of a cell.

The name parameter of the FILE and SYMBOL instructions is a variable length, zero
terminated string.

The ord parameter of the FILE and LINE instructions and the off parameter of
the SYMBOL instruction are regular cell-sized parameters. The line parameter of
the LINE instruction also has the size of a cell.

The flg parameter of the SYMBOL opcode holds the class and the type of the
symbol. The type is in the lowest byte; it is one of the following values:
1 a variable
2 a “reference”, a variable that contains an address to another variable (in

other words, a pointer).
3 an array
4 a reference to an array (a pointer to an array)
9 a function
10 a reference to a function (a pointer to a function)

The class is in the second byte; its value is:
0 the symbol refers to a global variable or to a function
1 the symbol refers to a local variable with a stack relative address
2 the symbol refers to a “static” local variable; the address is not stack

relative

The “off” parameter is relative to either:
COD if the symbol refers to a function
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DAT if the symbol refers to a global variable or a static local variable
FRM if the symbol refers to a local variable

An instruction for symbolic information is stored near the place where the vari-
able or function to which it refers is created or declared. For local symbols, the
symbolic information precedes the instructions that allocate, and optionally fill,
the stack space for the variable(s). There is no run-time allocation for global
symbols; therefore a symbolic debugger must browse through the code section
to parse the symbolic information instructions and to collect the global symbols.
This strategy was chosen as a compromise that minimized the overall effort to add
symbolic debugging support to the compiler and to create a debugger. Writing
the compiler was much easier when the symbolic information could be written
where the variable was declared in the source code. A debugger should have a
disassembler anyway. Combining these two resulted in decent debugger support
with a low cost in terms of complexity.

The SRANGE instruction extends a preceding SYMBOL instruction with information
about the dimensions and the size of an array. The first parameter gives the
dimension and the second parameter the length of that dimension.
� For single dimension arrays, a single SRANGE instruction follows the SYMBOL

instruction. The first parameter of the SRANGE instruction is zero (0) and the
second parameter gives the size of the array.

� For two-dimensional arrays, two SRANGE instructions complete the symbol defi-
nition. The first SRANGE instruction has its level (first parameter) set to one (1)
and the second parameter set to the size of the major dimension. The second
SRANGE instruction holds a level of zero and the size of the minor dimension.

When the “size” field of an SRANGE instruction is zero, the array size is indeter-
minate. When no SRANGE instruction follows a SYMBOL instruction that defines an
array, the array should be assumed a single-dimensional array with an indetermi-
nate size.

The Small compiler generates a LINE instruction before any other instruction for
that line. The “ord” parameter is the file number to which the line relates. The
Small compiler generates the FILE instruction at the point where the file is read.
So a debugger would gather the filenames (and their ordinals) in the same way
(and perhaps in the same phase) as the global symbols.
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Code generation notes appendix d

The code generation of the Small compiler is fairly straightforward (also due to
the simplicity of the abstract machine). A few points are worth mentioning:

� The abstract machine has instructions that the Small compiler currently does
not generate. For example, the LREF.pri instruction works like the dereference
operator (“*”) in C/C++. Small does not support pointers directly, but refer-
ences are just pointers in disguise. Small only supports references in function
arguments, however, which means that the “pointer operations” in Small are
always stack-relative. In other words, the Small compiler does not generate the
LREF.pri instruction, although if does generate the LREF.S.pri instruction.

The abstract machine is fairly independent from the Small language, even
though they were developed for each other. The Small language can easily
grow in the future, possibly with a “reference” variable type, thereby giving
the LREF.pri instruction a reason of being. The abstract machine cannot eas-
ily grow, however, because new instructions immediately make the new abstract
machine incompatible with previous versions. That is, programs compiled for
the new abstract machine won’t run on the earlier release.

� For a native function, the Small compiler generates a SYSREQ.C instruction
instead of the normal function call. The parameter of the SYSREQ.C instruction
is an index in the native function table. A function in Small cleans up its
arguments that were pushed on the stack, because it returns with the RETN
instruction. The SYSREQ.C instruction does not remove items from the stack,
so the Small compiler does this explicitly with a STACK instruction behind the
SYSREQ.C instruction.

The arguments of a native function are pushed on the stack in the same manner
as for a normal function.

In the “Small” implementation of the abstract machine (see page 83), the “sys-
tem request” instructions are linked to the user-installed callback function.
Thus, a native function in a Small program issues a call to a user-defined call-
back function in the abstract machine.

� At a function call, a Small program pushes the function arguments onto the
stack in reverse order (that is, from right to left). It ends the list of function
arguments on the stack by pushing the number of bytes that it pushed to the
stack. Since the Small compiler only passes cell-sized function arguments to
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a function, the number of bytes is the number of arguments multiplied by the
size of a cell.

A function in Small ends with a RETN instruction. This instruction removes the
function arguments from the stack.

� When a function has a “reference” argument with a default value, the compiler
allocates space for that default value on the heap.

For a function that has an array argument with a default value, the compiler
allocates space for the default array value on the heap. However, if the array
argument (with a default value) is also const, the Small compiler passes the
default array directly (there is no need to make a copy on the heap here, as the
function will not attempt to change the array argument and, thereby, overwrite
the default value).

� The arguments of a function that has “variable arguments” (denoted with the
... operator, see page 30) are always passed by reference. For constants and
expressions that are not lvalues , the compiler copies the values to a cell that is
allocated from the heap, and it passes the address of the cell to the function.

� For the “switch” instruction, the Small compiler generates a SWITCH opcode
and a case table with the CASETBL opcode. The case table is generated in the
COD segment; it is considered “read-only” data. The “none-matched” address
in the case table jumps to the instruction of the default case, if any.

Case blocks in Small are not drop through. At the end of every instruction in a
case list, the Small compiler generates a jump to an “exit” label just after the
switch instruction. The Small compiler generates the case table between the
code for the last case and the exit label. By doing this, every case, including
the default case, jumps around the case table.

� Multi-dimensional arrays are implemented as vectors that hold the offsets to the
sub-arrays. For example, a two-dimensional array with four “rows” and three
“columns” consists of a single-dimensional array with four elements, where each
element is the offset to a three-element single-dimensional array. The total
memory footprint of array is 4 + 4× 3 cells. Multi-dimensional arrays in Small
are similar to pointer arrays in C/C++.

As stated above, the “major dimension” of multi-dimensional arrays holds the
offsets to the sub-arrays. This offset is in bytes (not in cells) and it is relative
to the address of the cell from which the offset was read. Returning to the
example of a two-dimensional array with four rows and three columns (and
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assuming a cell size of four bytes), the memory block that is allocated for the
array starts with the four-cell array for the “rows”, followed by four arrays with
each three elements. The first “column” array starts at four cells behind the
“rows” array and, therefore, the first element of the “rows” array holds the
value 16 (4×cellsize). The second column array starts at three cells behind the
first column array, which is seven cells behind start of the rows array. The offset
to the second column array is stored in the it second element of the rows array,
and the offset of the second column relative to the second cell of the rows array
is six cells. The second value in the rows array is therefore 24 (6 × cellsize).



126 • Code generation notes



• 127

Index

� Names of persons (not products) are in italics.
� Function names, constants and compiler reserved words are in typewriter
font.

Abstract Machine eXecutive, 83–99
design, 109
file format, 113
opcodes, 115
registers, 112
stack based, 107

Actual parameter, 13, 23
Argument placeholder, 27
Array assignment, 47, 65
Arrays, 20

Progressive initiallers, 20
ASCII, 43, 69
Assembler, 110
Assertions, 44, 104

BCPL, 105
Big Endian, 42
Binary radix, 40, 64
Bisection, 29
BOB, 103, 107
Byte order, 113

Cain, Ron, 1
Call by reference, 11
Call by value, 11, 25
Chained relational operators, 13, 48
char, 65
Coercion rules, 30
Comments, 39
Constants, 40

predefined, 43
Control characters, 41

Data declarations, 18–21
arrays, 20
default initialization, 20
global, 18
local, 18
public, 18

Default arguments, 27
Default initialization, 20
Diagnostic, 22, 23
Directives, 55–57

Ellipsis, 30
Ellipsis operator, 20, 26
enum, 13, 42
Eratosthenes, 6
Errors, 70–82

run-time, 100
Escape characters, 5
Euclides, 5
Extension modules, 86, 123

Faculty, 25
faculty, 25
Fibonacci, 7
fibonacci, 8
Fibonacci numbers, 8
Fixed point arithmetic, 29, 62
Floating point, 62
Floating point numbers, 40, 64
Formal parameter, 23, 24
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Forth, 108
Forward declaration, 24, 31
Function

latent, 54
Function library, 58
Functions, 24–34

call by reference, 11, 25
call by value, 11, 25
coercion rules, 30
default arguments, 27
forward declaration, 24, 31
index, 58
native, 33, 86
public, 32
standard library, 58
stock, 33
variable arguments, 30

gcd, 5
Global variables, 18
GNU C, 110
Golden ratio, 8
Greatest Common Divisor, 5
Gregorian calendar, 8

Hanoi, the Towers of ~, 31
Hendrix, James, 1
Hexadecimal radix, 40, 64
Host application, 19, 33, 53, 54, 58,

101

Identifiers, 39
Implicit conversions, See coercion

rules
Internet, 106
ISO Latin-1, 43, 69
ispacked, 66

Java, 101, 107

Julian Day number, 8

Keywords, See reserved words

Latent function, 54

Latin-1 (character set), See ISO
Latin-1

LBF (Low Byte First), See Little
Endian

Leap year, 24

leapyear, 24

Leonardo of Pisa, 7

Library functions, 33

Literal array, 26

Little Endian, 113

Local variables, 18

Low Byte First, See Little Endian

Lua, 107

lvalue, 23, 45

Named parameters, 26

Native functions, 33, 86

Newton-Raphson, 29

Octal radix, 64

Operator precedence, 50

Operators, 45–50
user defined, 34

Optional semicolons, 39
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Packed string, 41, 59, 65, 105
Parameter

actual ~, 13, 23
formal ~, 23, 24

Parser, 3
Placeholder, See Argument ~
Positional parameters, 26
power, 24
Precedence table, 50
Prime numbers, 6
Priority queue, 16
Progressive initiallers, 20
Public

functions, 32, 58
variables, 18

Rational numbers, 40
Recursive functions, 31
Reference arguments, 11, 25
Reserved words, 39
REXX, 103
Ritchie, Dennis, 65, 102, 105
rot13, 12
ROT13 encryption, 12

Scaliger, Josephus, 8
Semicolons, optional, 39
Shadowing, 82
sieve, 6
Single line comment, 39
Small C, 1
Sorenson, P., 104
Square root, 29
Standard function library, 58
Statements, 52–55
Static locals, 18
Stevens, Al, 1

Stock functions, 33
String

packed, 41, 59, 65, 105
unpacked, 41, 59, 65, 105

Structures, 13
strupper, 67
Subject oriented, 104
swap, 25
Symbolic information, 70, 121
Syntax rules, 39

Tag name, 21
and enum, 43
override, 22, 49
predefined, 44
strong ~, 22
syntax, 44
weak ~, 22

Tag names, 104
The Towers of Hanoi, 31
Thompson, Ken, 107
Threading, 110
Tremblay, J.P., 104

Unicode, 43, 69, 106, 114
Unpacked string, 41, 59, 65, 105
User defined operators, 34

Variable arguments, 30
Variables, See Data declarations
Von Neumann, 109

Warnings, 79–82
weekday, 26, 55
White space, 39

Zeller, 26


